Category: Uncategorized

Heinkel He 177: the Bomber that Won the War: or ‘Grief of the Greif’

Over the course of the 20th century there are very few aircraft that can claim to have been truly decisive, whether by accident or design. The list might Include such worthies as the P-51 Mustang or the Hurricane. It is doubtful that Heinkel’s much derided He 177 would be included in such a list but nonetheless the case can be made that it was one of the most influential aircraft on the course of the Second World War. Unfortunately for Germany it was influential in exactly the opposite direction they intended. Named the ‘Greif’ (Griffon) the mighty aircraft promised much and delivered considerably less. Unlike dragons, griffons do not breath fire but fire was to prove particularly pertinent to the He 177 programme.

The Nazis were a government of fantasists, they fantasised about a huge German Empire, arranged on strict psuedoscientific racial lines that rated hair colour over talent. They fantasised about enormous ugly buildings, so large they would experience internal weather conditions. They fantasised about murdering a large swathe of their population on the basis of who their grandparents were, and unfortunately for everyone else, many of their fantasies spilled over into reality. One thing that you can’t accuse them of is a failure to ‘think big’ and so it was, just as with big tanks and big trains, they fantasised about big aircraft. The origin of what would become the He 177 lay in a somewhat murky programme for a big aeroplane, developed by the Reichsluftfahrtministerium (RLM) under the leadership of Generalleutnant Walther Wever, impressively named the ‘Ural Bomber’. Wever envisioned a strategic bombing arm for the Luftwaffe and was closely aligned with the prevailing theories then governing the development of air power in the UK and USA. To that end he approached aircraft manufacturers Junkers and Dornier, in secret, that would be able to attack Soviet industry in the event they moved their factories eastwards during a future war. The Do 19 and Ju 89 produced for the Ural Bomber programme flew in 1936 and 37 respectively and were decidedly humdrum. Meanwhile Wever died in an air crash in 1936 leaving the Luftwaffe bereft of a strategic bombing proponent. Wever’s replacement was Albert Kesselring, a talented General who oversaw development of the Messerschmitt 109, but he was far more interested in medium bombers. Ernst Udet headed up the Luftwaffe’s technical division and was totally fixated on dive bombers (which was to prove significant to the He 177 down the line) inasmuch as he was fixated on anything other than partying with plenty of alcohol and attractive women. Erhard Milch, their superior, was fully aware that Germany lacked the industrial capacity at this point to produce strategic bombers in any meaningful quantities. Between them they persuaded Herman Goering to drop the Ural bomber programme and concentrate on tactical bombers, a strategy that was, initially at least, very successful but was to cost them dear later on. Goering is alleged to have stated, “The Führer will never ask me how big our bombers are, but how many we have.” Nonetheless, with the unfocussed strategy typical of the Nazi period, the idea of a strategic bomber was not completely quashed, indeed work on very large strategic aircraft was resuscitated with the requirement, issued in 1937, for an aircraft capable of carrying a five tonne bomb load to New York which really was in the realm of fantasy in the late 30s.

Out of all this muddled thinking and vacillation came the He 177: once the tepid performance of the Ural bomber contenders became known, a more modest requirement, named ‘Bomber A’ was issued by Wever on the very day of his death. The specification called for an aircraft to carry a tonne of bombs over a range of 5000 km at a speed not less than 500 km/h (311mph). This was an exceptionally challenging specification and the speed element alone put the bomber into territory beyond that of contemporary fighters, being known as the Schnellbomber concept, the same basic idea would result in the incredibly successful De Havilland Mosquito, but was to be the source of much heartache for the Luftwaffe.

Heinkel, well respected for the successful (and fast) He 111 that was then gainfully being employed laying waste to large areas of metropolitan Spain, responded to the tender with Projekt 1041, building a full scale mock-up by November 1937. Coincidentally Heinkel had been working on ways to wring the maximum speed out of aircraft design and had lighted on an almost pathological obsession with reducing drag – a process that resulted in the undeniably graceful He 119 which featured a smoothly tapering fuselage from nose to tail with no unsightly windscreens or other excrescences to spoil the streamlining. Significantly they had powered the He 119 with two Daimler Benz DB 601 engines mounted side by side in the fuselage and geared together to drive a single airscrew. Designated the DB 606 and known, rather grandiosely as a ‘power system’, the siamised engines had performed sufficiently well in the He 119 for Heinkel to propose two such ‘power systems’ for Projekt 1041, a decision that would see a significant reduction in drag over a similar aircraft with four separate engine nacelles but was to prove disastrous to the programme as a whole. But this would be only the most serious of the manifold problems of the He 177, virtually every major design decision Heinkel made was ill advised at best, as follows:

The DB 606 had caused no problems onto He 119 but in the He 177 the ‘power system’s were an incredibly tight fit in their cowlings. Both engines shared a common central exhaust manifold serving a total of 12 cylinders, the two inner cylinder banks of the component engines. This central exhaust system would often became extremely hot, causing oil and grease which routinely accumulated in the bottom of each engine cowling to catch fire. this problem was compounded by the fact that there was a tendency for the fuel injection pump on each engine to lag in their response to the pilot throttling back in such situations, deliver more fuel than was required and thus fuel the fire, in addition the fuel injection pump connections often leaked. Furthermore, to reduce the aircraft’s weight no firewall was provided, and the back of each engine was fitted so close to the main spar, with two-thirds of each engine being placed behind the wing’s leading edge, that fuel and oil fluid lines and electrical harnesses were crammed in with insufficient space and the engines were often covered with fuel and oil from leaking fuel lines and connections. At high altitude the poorly designed lubrication pump led to the oil foaming, reducing its lubricating qualities. Insufficient lubrication ultimately resulted in connecting rod bearings failing (which also befell the Avro Manchester but that aircraft was quickly altered into the superlative Lancaster), resulting in the conrods sometimes bursting through the crankcases and puncturing the oil tanks, the contents of which would then empty onto the white hot central exhaust manifold. The tightly packed nacelles in which the engines were installed on the He 177A, with many of the engine’s components buried within the wing led to very poor ventilation as well as poor maintenance access. In the words of one aviation historian, the engine accessories and cowling of the He 177 were ‘almost wilfully badly designed’. Essentially the He 177 was a fire waiting to happen.

But there was more. In an effort to fulfil their obsessive desire to reduce drag, Heinkel decided to use cutting edge technology to provide the aircraft’s defensive weaponry in three remotely controlled turrets. These offered other advantages such as reducing the vulnerability of the gunners and providing them with the best possible view. Unfortunately development of the remote turrets lagged behind the airframe and the aircraft had to be redesigned to allow manned gun position to be fitted, this required strengthening the aircraft in the affected areas and increased weight again. Eventually, later production He 177s got one remote turret at least. The manned tail gun position was always problematic, initially requiring the gunner to lay prone at his position, production aircraft at least gave him a seat but the field of fire was always very limited. 

Weight growth meant that the original single wheel undercarriage would be insufficient to handle the ever-enlarging He 177. The undercarriage legs needed to be long to allow ground clearance for the unusually large propellers (required for the mighty power of the DB 606). With limited room in the nacelle and wing for a larger undercarriage unit, Heinkel adopted the unique expedient of having two separate legs, each with its own wheel, that retracted in opposite directions up into the inner and outer wing simultaneously. Ironically, given that this system was adopted due to weight growth, the undercarriage design was very heavy and contributed to weight growth. Furthermore it added complexity for servicing, just changing a tyre required two hours of work and involved the use of a massive 12 tonne capacity jack.

As if this weren’t enough tests on the first A-1 production aircraft revealed that the wing had been improperly designed and would begin to fail after only 20 flights (provided the engines hadn’t caught fire by then) and extensive redesign and strengthening was undertaken requiring further time and increasing weight.

Meanwhile, the specification changed. After the death of Wever, the impetus for strategic bombing was lost. At the same time Ju 87 Stuka dive bombers were proving impressively successful in Spain. Contemporary German bombsights were pretty inaccurate (as were most bombsights at the time to be fair) and experience in Spain demonstrated that dive bombing was more effectively destructive than level bombing by conventional medium bombers. And thus, if a small aircraft could cause so much devastation by dive bombing, imagine how much potent that would be if the dive bomber were a large aircraft. On 5 November 1937 the RLM issued the stipulation that the He 177 should be capable of shallow angle dive bombing. Ernst Udet mentioned this to Ernst Heinkel when inspecting the He 177 mock-up on the same day. Heinkel stated that the 177 would ‘never’ be capable of dive bombing. 

Despite Heinkel’s response, the design was modified to possess the structural strength to safely pull out of shallow dives, thus beginning the aircraft’s inexorable increase in weight before it even existed, just in time for the requirement to be altered again to demand the He 177 be capable of 60 degree dive bombing. This is very steep, especially for such a large aircraft, the design was altered and strengthened again, this time causing a large jump in weight. If you are sniggering over the idea that such an obviously unsuitable aircraft as the 32 tonne, 100 foot wingspan, He 177 could be even considered for dive bombing, it is worth remembering that this wasn’t solely just some madcap Nazi scheme – the specification that called for the eminently sensible (ie dull) Handley-Page Halifax four engined heavy bomber of roughly the same dimensions and weight also stipulated that it be capable of dive bombing. Air forces across the world were painfully aware that the accuracy of level bombing was pretty woeful and were attempting to change that state of affairs. However, the British Air Ministry actually listened to Frederick Handley-Page when he told them the Halifax would never be capable of dive bombing. The RLM chose to ignore Ernst Heinkel to pursue their dive bombing dreams, which would never be realised, and paid for them with wasted time and weight growth 

The first He 177 flew on 9 November 1939 and all seemed broadly well despite its litany of questionable design choices and ongoing wrangling over its application. But then the engine temperatures soared and the aircraft had to return hurriedly to the ground, a fairly accurate premonition of what was to come. Similarly, the hopelessness of the dive bombing concept was made very apparent very quickly when the second prototype undertook the He 177’s first diving trials and promptly broke up in mid air, killing all on board. Just to make sure the point was adequately made though, during further diving trials the fourth prototype then dove straight into the Baltic Sea, killing all on board. The fifth prototype was the first to catch fire and was lost, followed by a further three.

The biggest myth about WW2 aviation is…

…that the Battle of Britain was a close run thing, won by a narrow margin.  It really wasn’t.  The Luftwaffe were whipped and whipped badly.  I can produce all number of stats to prove my point but perhaps this isn’t the place.

The Hush-Kit Book of Warplanes will feature the finest cuts from this site along with exclusive new articles, explosive photography and gorgeous bespoke illustrations. Pre-order The Hush-Kit Book of Warplanes hereThank you. Our merchandise shop is here and our Twitter account here @Hush_Kit. Sign up for our newsletter here. The Hush-Kit Book of Warplanes will feature the finest cuts from this site along with exclusive new articles, explosive photography and gorgeous bespoke illustrations. Pre-order The Hush-Kit Book of Warplanes here.

Nonetheless, when working properly the He 177 possessed a performance that could not be ignored and the aircraft entered production, beginning with 35 A-0 pre production models followed by 130 A-1s, the latter all built under subcontract by Arado. virtually all of these aircraft were kept in second line service due to ongoing teething troubles. KG 40 were the first unit to attempt to use the bomber operationally in the maritime role during the summer of 1942, but this proved premature and they reverted to their Fw 200 Condors. The A-3 was an improved version, though still problematic, 170 of which were built. Further effort yielded the A-5 with more powerful DB 610 ‘power systems’ and many of the problems ameliorated if not solved and some 350 of these left the factory. Further developments led to the A-6 and A-7 of which a handful were built by which time development had switched to the He 177B with four conventional separate engines (and which would never progress beyond the prototype stage).

In service the He 177 never served in the numbers required to really make a difference and only became a mature enough design to commit to mass usage at around the same time that Germany effectively ran out of fuel. It is not known what proportion of the 1169 produced saw service but estimates range as low as 200. What is known is that hundreds of He 177s appeared parked at bases on Allied reconnaissance photographs and contemporary photographic interpreters stated “absence of track activity suggests that these aircraft are not being worked on.” 

To be totally fair to the He 177 it should be pointed out that it could prove to be effective on operations, it had, for example, the lowest loss rate of any German bomber during the ‘Baby Blitz’ of 1944 though the overall loss rate of all types was an eye-watering 60%. It was also formidable as an anti-shipping platform equipped with the Fritz-X radio controlled glide bomb, though on its debut in this role, the captain of the ship being attacked noted that one of the aircraft appeared to burst spontaneously into flame, which may not come as a great surprise to those familiar with the aircraft. “For five or six seconds we saw a large flame coming from the port engine and then the aircraft was enveloped in a dense black cloud of smoke. When I last saw the aircraft it was at an angle, which may have been done deliberately to blow the flame away, or it may have been losing height. It went into cloud and I did not see it again.”

The facts were that the He 177 was too accident prone, too late and too resource heavy. It is difficult to quantify exactly how many manhours were expended on its development and production but as this was at exactly the same time Heinkel were developing the world’s first jet fighter (that would ultimately never see production due to inexplicable official indifference) it was obvious that there were more worthwhile things they could have been doing. As to how much material went its production, each He 177 consumed four DB 601 or DB 605 engines for its ‘power system’s. With 1169 built that’s enough for 4676 single engine fighters, all of which never existed to attack Allied aircraft or strafe Allied troops. The empty weight of each aircraft was 16.8 tonnes, that is a lot of aluminium and steel to not be made into other more useful, aircraft (for comparison, a BF 109G weighed about 2.2 tonnes).

But perhaps the timing was the worst of all. The He 177 could deliver the goods in terms of speed, range and payload, at least when everything was working. But the desultory expenditure of time on tinkering with the design to try and make it work properly, which it didn’t really do for about five years, meant that the bomber essentially joined a war already lost. To put this into perspective, the He 177 flew for the first time in November 1939, a month after the Handley page Halifax, yet the Halifax began operational service in late 1940 and contributed much to Bomber Command’s horrific campaign against German urban centres. If one were to imagine an He 177 force, and the 177 was arguably a more potentially formidable aircraft than the Halifax, available at the end of 1940 then the destruction meted out to British cities would have been an order of magnitude higher than it transpired to be. The He 177 could carry more than any other German bomber and was extremely difficult to intercept by 1940/41 standards, even more so by night when it would have been effectively immune to night fighters, at least until the advent of the Mosquito.

Thus the badly designed large aircraft that, unavailable at the right time, built to a requirement its operators found uninteresting, consumed much industrial effort and material and required many trained aircrew who could have been flying something else. 

Did the He 177 cause the Allies to win the war? In reality, almost definitely not, Hitler’s decision to invade the Soviet Union basically sealed the fate of Germany in June 1941. But it is not hard to imagine that a combat capable He 177, available in numbers in 1940, would have had a tremendous effect on the UK which could have adversely affected US commitments to its ally. Meanwhile a force of He 177s in the maritime role could have caused havoc with British naval operations. All of which does rather presuppose a massive production effort on the big Heinkel, which may have been beyond Germany’s ability to supply at that time. Nonetheless Goering summed up the effect of Germany’s fixation on the tactical medium bomber fleet in 1943, ”Well, those inferior heavy bombers of the other side are doing a wonderful job of wrecking Germany from end to end”, had the Greif been the priority earlier perhaps it would have been Luftwaffe heavy bombers wrecking Britain from end to end. It’s absence, whilst probably not decisive, was colossally influential.

He 177 engine run

This is the helicopter we need for the most dangerous threat we face

A Helicopter the World Needs

Dr Ron Smith joined the British helicopter company Westland in 1975, working in Research Aerodynamics, remotely piloted helicopters, before becoming Head of Future Projects. He had a strong influence on the design of the NH90, and was involved in the assessment of the Apache for Britain. We asked him what to consider what helicopter the world most needs.

The Problem

Having been asked the question “what helicopter does the world need?”, I am thrown back to a query raised with me a couple of years ago. “Could you develop a fire-fighting or crane helicopter with a water / fire suppression load of 20 tonnes or more?”

With climate change, there is an increasing wildfire risk worldwide. There is a very good discussion of this at

In recent years there have been significant fires affecting Australia, the Amazon region, the US West coast from Washington State down to California, Indonesia, southern Europe and Central and Southern Africa. With climate change in the far north, significant fires have also broken out in both Alaska and Siberia.

Given this wide geographic spread, fire seasons are now occurring pretty much throughout the year, and indeed seasons are beginning to overlap in geographically dispersed locations such as those listed above.

The US Forest Service’s Aerial Firefighting Helicopters

Notable on the above figure is the markedly increased risk of severe fire risk weather conditions in Southern Europe and Southern Africa in addition to significant percentage increases in many of the current high-risk locations.


So, what do we need and how do we get it?

I see this as having some parallel with the difficulties currently being experienced in dealing with the present COVID-19 pandemic.

One’s first reaction is – well, fix the emissions and it will go away. However, the world’s scientists and governments have known about climate change for decades and (despite some encouraging changes in direction in the US Administration) there is a lack of effective global coordinated action. Nowhere is this more evident than in Australia, where the Government seems more focussed on maintaining its coal exports to China than on reducing emissions.

In the case of the pandemic, the World Health Organisation has said that effective vaccination is needed world-wide, but many wealthy nations are taking the ‘after we’ve looked after ourselves’ approach. This despite the acknowledged rationale that any pool of unvaccinated populations will provide a source of mutated variants that could stretch the crisis out for years.

So past and current behaviours tell us that there isn’t going to be a magic reduction in world-wide emissions (and even if there was, the path is already set for significant climate change).

There does not seem to be a military need for large crane helicopters and the largest helicopter available today originates from Russia, which is currently something of a problem child in terms of global diplomacy, and this type is not available in a fire-fighting variant.

The largest lifting capability currently in servie is the Erickson CH-54B / S-64K Skycrane fleet operating at up to 47,000 lb max weight and the Billings and Columbia CH-47 adaptations at around 50,000 lb max weight. Some 31 Erickson Skycrane have been built.

Mil Mi-26 helicopter - development history, photos, technical data

A high-capacity fire-fighting crane could potentially be generated using a Mil Mi-26 dynamic system (rather like the Mil Mi-10K derived from the Mil Mi6) but this note examines what a new-build aircraft for the role might look like.

A helicopter makes a night water drop on the leading edge of the Lake fire which has burned more than 10,000 acres near Lake Hughes north of
Los Angeles. (Photo by David Crane)

How would it be Funded?

With no military need, could funding be raised from concerned nations? Europe, the United States and Australia might head that list, but past and present behaviours suggest that those, with existing helicopter design and manufacturing capability, would lobby to have any such work placed with their own domestic industries.

The future wildfire risk forecast suggests European nations, particularly Italy and France, which have significant land areas near the Mediterranean, and strong helicopter industries; and the US, which has been having significant fire problems, particularly in the West, might be best to develop this capability.

While noting these countries as having the greatest need and the requisite capabilities, in the absence of any current project activity, I am forced to leave the question of funding and acquisition management on one side for the moment.

What is the operational vision? There probably needs to be around 60 – 80 aircraft allocated to this task, with greater numbers concentrated where there is the greatest risk to human life and economic impact. The fleet would be dispersed with perhaps 10 in southern Europe, 20 on the west coast of the United States, 15 in Australia, 10 in South America and a reserve fleet to respond to emergencies elsewhere and to provide a surge capability when required.

The climate data indicates that additional capability might be required in Southern Africa and in Russia, should funding become available. In view of the global nature of the problem, consideration should be given as to whether there might be support available from the UN, as well as an assessment of the level of interest in countries such as Russia and China, both of which are likely to have future need for such a helicopter.

The Air Vehicle and Equipment

Drawing on my thirty-year old experience of helicopter preliminary design, I will outline some very basic rule-of-thumb thoughts on what a new fire-fighting crane might look like.

The discussion will necessarily be highly simplified at this stage but will give some idea of how to get into the ‘right ballpark’. From there, we can evaluate what other areas would need to be investigated to harden up the design.

The Mil Mi26 will give some idea of the size of helicopter required. The quoted figures for this type include an empty weight of around 62,000 lb, a ‘gross weight’ of 109,000 lb and a maximum take-off weight of 123,000 lb. The aircraft has an eight-bladed rotor of 105 ft diameter and is powered by two ZMKB Progress D-136 engines, each rated at 11,400 shp.

Where to Start?

We start with some ground rules for the new design:

  • The helicopter must use engines that are already certified and in production in the west. The parallel development of a new powerplant would result in excessive risk to the project.
  • The target payload is 20 tonnes (roughly 45,000 lb)
  • Design ambient conditions should reflect those in typical fire risk regions – perhaps 2,000 ft and ISA +30C (although this aspect can be subject to confirmation).
  • The aircraft needs to be capable of regional self-ferry operations. Possibly three hours endurance at 125 kt+. In actual use, most drop operations are likely to be between hover and minimum power speed. Modular arrangements to allow long range tanks to be fitted should be investigated.
  • The rotor should be optimised for hover and low speed operation, thereby maximising payload and endurance. This implies composite blades with modern aerofoils and a non-linear blade twist of perhaps -14 degrees, probably with an anhedral tip. Between six and eight blades would be used and, for hover efficiency, the rotor tip speed would probably be around 660 ft/sec (similar to that of the Sea King and AW101).

Where do these assumptions lead us?

The above constraints allow us to make the following decisions:

(i) The aircraft is likely to be in the same weight class as the Mil 26 and therefore we are looking for an in-service powerplant in the 11,000 shp class if two engines are to be used. The only candidate currently available is the Europrop TP400-D6 used on the Airbus A400M aircraft. Basic information has been drawn from the EASA Type Certificate Data Sheet (TCDS) for this engine. The 5 minute take off rating of this engine is 8,251 kw (11,000 hp).

(ii) The likely payload fraction of the helicopter is estimated at 45%, although 50% may be achievable for a crane configuration. This implies a maximum weight of around 100,000 lb. Taking a hint from the Mil Mi-26, we will assume a rotor diameter of 100 ft.

(iii) Will the power be sufficient? Our data suggests that two of the TP400-D6 engines used on the A400M, coupled with an appropriate main rotor gearbox, would be likely to be sufficient.

Clearly, a proper design with detailed weight estimation and specific attention to both engine and gearbox rating structures would be required to firm up the figures suggested in the text box. A key question in respect of the Europrop engine would concern the implications of providing a short duration contingency rating to be used to fly-away following an engine failure.

Gearbox Requirements

Mi-26 helicopter firefighters

The existing TP400 engine comes with a propeller reduction gearbox that reduces the take-off prop rpm to 864, from an output shaft speed of 8580 rpm. For the helicopter, the proposed tip speed of 660 ft/sec on a 100 ft diameter rotor implies a nominal rotor rotational speed of 126 rpm.

The helicopter gearbox is likely to be lighter if the A400M propeller reduction gearboxes are not used and the overall reduction is accomplished within the main gearbox. This implies an overall ratio of around 68:1 between the engine output shaft and the main rotor drive.

The TP400 engine would need to be certificated for helicopter applications, whether or not the existing reduction gearbox was retained. One specific consideration would be the vibration environment to which the engine would be exposed in any helicopter application.

Notionally each engine would be spaced outboard of the helicopter main gearbox. A bevel gear would redirect the drives toward the gearbox. A further bevel gear would turn the drives vertically into two planetary (or epicyclic) stages to drive the main rotor shaft. A tail rotor drive would be provided to the rear, with an accessory gearbox mounted forward.

This arrangement provides four reduction stages (two bevel stages and two planetary stages). The overall 68:1 ratio would be provided using an average reduction of around 2.8:1 per stage.

Other aspects of the airframe design would broadly be similar to an enlarged version of the Sikorsky S-64.

Sikorsky S-64 Sky Crane | Aircraft |

Fire-fighting equipment

Delivery of water, fire suppressant chemicals, or a mix of the two is anticipated to be through the use of a fire-fighting turret, as this provides an opportunity for greater precision in application than a simple water drop system, The directional fire-fighting turret could be mounted on a suspended water tank arrangement. Arrangements to stabilise the position of the turret with respect to the helicopter are likely to be required. (This would be needed to control the cg position of the heavy load and should also lower operator workload and ease the design of the helicopter Flight Control System.)

The operator could use sensors to define the jet aim point(s) and an active control system could then adjust the fire suppression jet onto the target, or along a defined line. An increased payload (longer delivery time) and targeted delivery should significantly increase efficiency and reduce operator workload.

Provision will also be required to allow the helicopter to take on water through a suction pump arrangement similar to that used by many other fire-fighting helicopters. This will allow flexible operation, particularly where lake, dam or oceanic water is available close to the location of fires.

Unanswered Questions and Risks

Identification of funding and commercial principles.

Market analysis and solicitation of government, national park agencies, fire services and end-user opinions.

Selection of helicopter manufacturer based on facilities, experience, capacity, etc. Almost certainly an existing helicopter manufacturer.

Allocation of sub-contract and supplier elements. This to include selection criteria and sub-contractor qualification and management.

Powerplant development and certification for helicopter applications.

Understanding of powerplant constraints, including physical, electrical, electronic / digital interfaces, engine vibration and other environmental clearances.

General engine performance characteristics – power / fuel flows vs altitude & temperature; intake and exhaust constraints; particle separation.

Definition of engine and gearbox rating structures (including contingency rating(s) and one engine inoperative operation). Possibly linked to dynamic simulation of post-engine failure fly-away manoeuvres.

Mass estimation and loads modelling including crashworthiness

Flight performance modelling

Manufacturing tooling of 50 ft composite blades (tape laying, autoclaves, etc). There are likely to be significant non-recurring costs for such items, to be amortised over a relatively short production run.

Main gearbox test facility compatible with engine power available, another significant non-recurring cost to be amortised.

Structural static and fatigue test rigs

Rotor head and blade design. Control power when operating high inertia system in turbulence?

Fatigue life of critical components (and their validation / verification)

Digital architecture and flight control system design (hardware & software)

FADEC responsiveness (taking into account the fluctuating power requirements likely to be found in the turbulent conditions encountered in the vicinity of large fires).

Failure modes and effects analysis, Health & Usage Monitoring Systems

Cockpit design / human factors – for both pilot and fire suppression system operation

Design and development (hardware and software) of fire suppression stabilised turret

Vibration control and structural dynamics

Flight test and certification

In service support

The overall task would be managed with a defined work breakdown structure (WBS) such as Mil Std 881D:

This would typically include

a. Integration, Assembly, Test, and Checkout

b. Systems Engineering

c. Program Management

d. System Test and Evaluation

e. Training

f. Data

g. Peculiar Support Equipment

h. Common Support Equipment

i. Operational/Site Activation

j. Industrial Facilities

k. Initial Spares and Repair Parts

Included within item (a) above is the design, integration, assembly, test and certification of all Air Vehicle elements and systems / sub-systems.

Planning (including taking account of long lead items) for all the above activities will be required to generate an overall development programme. This plan, with suitably realistic contingency allowances, will be required to establish programme costs and the associated spend (and investment) profile.

Overall Conclusion

A new large crane helicopter could feasibly be developed based on the use of a pair of Europrop TP400-D6 engines adapted for helicopter use.

There is a clear need for a helicopter of this type based on current experience and projected increases in wildfire events worldwide.

Bringing such a project to fruition requires a significant effort on a number of fronts. Not the least of the challenges is the raising of investment funds (possibly on an international or global basis) to see the project through to completion.

Without the availability of a significantly increased fire-fighting capability, there is likely to be a severe penalty in terms of the loss of property, livelihoods and lives, in a number of the widespread regions that are at risk. The potential economic damage of future wildfires is such that investment in the development of a modern, capable, helicopter system to fight these fires appears not merely prudent, but essential.

RV Smith

May 2021

Quickfire World War II combat aircraft Q&A with author James Holland

The Spitfire was…

…my first love.  I had been interested in the Second World War as a boy, then it all rather went out the window in my teens.  Then, in my late twenties, I was playing cricket and while I was batting a roaring, pirouetting vision appeared far over mid-wicket.  Turning to the umpire, I said, ‘What is that??’ And he replied solemnly, ‘That’s a Spitfire.’  It was a massive Damascene moment.  The following weekend was Flying Legends at Duxford, so I took myself off, drooled over the warbirds and especially Spitfires and bought a first edition of David Crook’s ‘Spitfire Pilot’ about his time in 609 Squadron in the Battle of Britain.  It was the kickstart of my enduring fascination with the war and, as it turned out, my career.  I absolutely love the Spitfire – who doesn’t? – and have loved watching them, flying in one, writing about them and getting a little thrill every time I see one.  As I’ve got older and learned more, I’ve learned a bit about some shortcomings but there’s no denying what a fabulous aircraft it was and remains.  I love the Mk I because it was there in 1940 and it’s what David Crook flew, I love the Mk V because it was flying in Malta in 1942 and I wrote my first history book on the subject, I love the Mk VIII because they were sent to Bengal and Burma in 1943 and turned things around there, I love the Mk IX because it was the fighter pilot’s favourite, and I love the Mk XIV because it was Griffon-powered and simply amazing.  But I love them all, really.

The P-51 Mustang was…

“…the most decisive aircraft ever built – or, at least, I think it can be quite convincingly argued.  The Merlin-powered P-51B onwards transformed the air war, allowing daylight bombing deep into Nazi Germany, which in turn meant hammering their aircraft industry.  This materially helped the Allies win air superiority over all of North-West Europe, a non-negotiable pre-requisite for any Allied invasion on D-Day.  This was because to destroy the enemy’s lines of communications – bridges, railway marshalling yards, locomotives, roads and so  on – they had to attack low-level and the only way that could be done was by having skies clear of marauding Luftwaffe fighters.  It was achieved just a few months after the Merlin-powered Mustang’s arrival into the fray.  And what an aircraft!  The look of it, the speed of it, the ridiculous range, the rate of roll, of dive and frankly, its modernity.  I absolutely LOVE the Mustang.”

The RAF was ____________ compared to the Luftwaffe?

The RAF was vastly superior compared to the Luftwaffe for much of the war.  OK, so Bomber Command was a bit rubbish early on, and the RAF didn’t have enough aircraft in 1939-40, but the RAF gave the Luftwaffe a bloody nose over Dunkirk, then comprehensively won the Battle of Britain, which was one of the main turning points in the entire war.  By not defeating Britain in 1940, Hitler was forced, through lack of resources, to turn to the Soviet Union far earlier than he had planned – and with catastrophic consequences.  In the summer of 1940, the RAF – and I include Bomber and Coastal Commands as well as Fighter Command in this – were the first line of defence, not the last as is so often portrayed, but they were none the less the ones who destroyed Hitler’s hopes for a swift end to the war – and without a swift end it was very unlikely Nazi Germany could ever win.  The RAF made mistakes – the disastrous rhubarbs over France in 1941, the abject failure to send Spitfires to Malta and the Middle East in 1941, for eg – but by 1942, the RAF was pioneering new methods of tactical air power – doctrine still used to this day, incidentally – and growing air power in all its many facets into a war-winning a decisive weapon.  As the RAF grew in size, stature, performance and capability, so the Luftwaffe diminished.  One can argue the toss about the morality of such overwhelming air power – and of strategic bombing – but no-one can deny its impact or that it saved lives of Allied servicemen.

A cliche or oft-repeated quote that drives me mad…

“…that Hurricanes shot down more aircraft in the Battle of Britain than Spitfires.  Yes, of course, because there loads more of them and for the most part they were going for bombers, which were a bigger target, slower and easier to shoot down.  It doesn’t mean the Hurricane was better, though.”

World War II would have been very different without…

“…the Battle of Britain.”

What was the most important aerial contribution to the war? 

“I’m going to top and tail this.  Probably the Battle of Britain to begin with because of reasons listed above, but I’ve always thought the single most important theatre of the war was the Atlantic – without it, Britain, Canada and the USA would not have been able to prosecute the war against Nazi Germany and the Axis powers, and without the closing of the air gap, it would have taken longer to defeat the U-boats.  One can’t underestimate the importance of the Very Long Range Liberators flying anti-shipping patrols across the Atlantic.  Then finally, the war would have very probably gone on into 1946, had the B-29s not dropped the two atomic bombs on Japan.  Not sure which is the most important – probably, because of what followed, the Battle of Britain, but all three really very, very significant.”

The biggest myth about WW2 aviation is…

…that the Battle of Britain was a close run thing, won by a narrow margin.  It really wasn’t.  The Luftwaffe were whipped and whipped badly.  I can produce all number of stats to prove my point but perhaps this isn’t the place.

The Hush-Kit Book of Warplanes will feature the finest cuts from this site along with exclusive new articles, explosive photography and gorgeous bespoke illustrations. Pre-order The Hush-Kit Book of Warplanes hereThank you. Our merchandise shop is here and our Twitter account here @Hush_Kit. Sign up for our newsletter here. The Hush-Kit Book of Warplanes will feature the finest cuts from this site along with exclusive new articles, explosive photography and gorgeous bespoke illustrations. Pre-order The Hush-Kit Book of Warplanes here.

The most overrated warplane of the conflict was the…

…the Mitsubishi A6M Zero.  I’ve never really understood why it prompts such hushed gasps of awe when people talk about it.  Sure, it had range, but it wasn’t brilliant in a dive and although manoeuvrable, wasn’t particularly so at high speed.  Sleek and refined, it did have a phenomenal rate of turn, and shocked the Allies when it first appeared against them in 1941-42 but then flat-lined.  The Spitfire, the Mustang and other US Navy fighters were dramatically developed and improved or replaced, but the Zero rather stuck where it was and that’s no good.  In the Second World War, the ability for combatant nations to rapidly progress technologically was vital.  I’ve also started to think the Zero flattered to deceive in the early years, despite obvious plus points.  The reason was largely down to the quality of the Japanese naval pilots.  If anyone has read Samurai! By Saburo Sakai, they’ll get what I’m driving at here.  His training was immense – physically, technically, mentally.  Those pilots were the best of the best, to quote from Top Gun.  I was talking to some of the Red Arrows the other day and was struck by the similarity of the intensity of their training compared with that of the IJN fighter pilots at the early part of the war.  And, of course, that gave them a massive edge and sheer pilot skill overcame many of the Zero’s shortcomings and so helped put it on a pedestal I’m not sure it quite deserves.   Inevitably, though, as the war progressed, training standards fell off for the Japanese while the Zero stood still.

And the most underrated? 

“What about the Heinkel 112?  This was developed in the early 1930s in tandem with the legendary Messerschmitt 109, but was shelved in favour of the twin-engine Me 110, partly because Willi Messerschmitt was an appalling arse-licking Nazi and partly because Göring simply liked the look of it and named it the ‘Zerstörer’ (the Destroyer).  But the He 112 V9 was properly classy and in 1937 could fly faster than the Bf109.  It had elliptical wings very like those of the Spitfire, a wide undercarriage with inward retraction, which gave it a firm platform and would have saved the lives of countless trainee fighter pilots who died horribly on landing and take-off in their 109s, it had decent rate of climb, was highly manoeuvrable, a bubble canopy and low-back fuselage and looked absolutely stunning.  Perhaps more importantly, it had phenomenal range – nearly 700 miles, which was extraordinary for a single-engine fighter at that time.  It’s fascinating to ponder what might have been in 1940, for example, had the Luftwaffe had a stack of these instead of the Messerschmitts.  I would also tentatively suggest that its innate design was so good it had plenty of room for development, which is more than can be said for the Me109.  I remember talking to Eric ‘Winkle’ Brown about it and he much preferred it to the 109.  Thank goodness Göring was such a rubbish commander-in-chief of the Luftwaffe!

Do you think there is any national bias in how we talk about aircraft from different countries?

“I like to think I’m impeccably impartial and one can’t argue that the Axis forces lost, but anyone reading the above answers might think I was a teeny bit biased towards the RAF…”

Which aircraft is most like you and why?

“Maybe the Hawker Typhoon.  It operates quickly, is like a bull in a china shop, and leaves carnage in its wake.”

Hawker Typhoon

Tell me something I don’t know about WW2 aviation? 

“By the summer of 1942, Air Vice Marshal Arthur ‘Mary’ Coningham, an Aussie-born New Zealander, and his British sidekick, Air Commodore Tommy Elmhirst, had developed the RAF Middle East’s Desert Air Force into a very slick fighting machine.  Coningham had the vision and ideas, supported by his RAF Middle East C-in-C, (then) Air Marshal Arthur Tedder, while Elmhirst had the operational skill, reworking the structural organisation brilliantly.  The RAF had begun the war with little concept of a tactical air support – that is, operating to provide close air support to ground troops – so Coningham and Co really were pioneers and the Desert Air Force developed purely for that role.  When increased US Army Air Forces joined the British war effort in North Africa, mainly from November 1942 onwards, they soon decided to pool resources and create the first specific Allied NorthWest African Tactical Air Force.  Coningham was appointed its first commander, and Brigadier-General Larry Kuter, an American, its deputy.  Elmhirst remained in an administrative role.  These were exciting times as Allied air forces in theatre swelled and they gradually and increasingly successfully turned the screws on both the Italian and German air forces over Tunisia, and senior commanders both got on and worked well together, conscious they were paving the way for new techniques in air power.  Coningham and Kuter were especially tight.  Later, Kuter returned to Washington and post-war was responsible for writing the tactical doctrine of the new US Air Force.  Much of this doctrine remains in place today – but its origins can be directly traced back to the heat and sand of the Western Desert of 1942.”

James Holland FRHistS is an author and broadcaster who specialises in the history of World War II. He is the co-host of the We Have Ways of Making You Talk podcast


“Fuck stealth!” An F-15 pilot opines on why the Eagle II is needed (and the story of the ‘Eagle Eye’ hunter scope)

My friend Joe Coles, who publishes the excellent Hush-Kit aviation blog, asked for my thoughts on the USAF’s new version of its legacy fighter, the F-15EX Eagle II. This is my short response:

Joe, I can’t speak much to the aircraft itself, but I started pushing the idea of buying some of the advanced versions being built for allied nations years ago, prompted by the aging of F-15s still in USAF service and the far smaller buy of F-22s than originally planned. At the time no one in any official position would even broach the subject, because to do so would threaten the F-35 buy. Now, USAF leaders are openly talking about a “future without the F-22” and even more cutbacks in the total F-35 buy … the good old F-15 has range the F-22 and F-35 don’t, a robust airframe you can hang the most powerful radar on, and the ability to carry up to 22 air-to-air missiles. All you give up is stealth. And as I also said years ago, “fuck stealth.” I’ll see what I can work up.

By way of backup, I first wrote about buying new F-15s in July 2015. In that post I cited three ‘legacy’ fighters the U.S. military was no longer buying, but which were still being built for foreign sales: the F-15 Eagle, F-16 Fighting Falcon, and F/A-18 Hornet. At the time, no one in the military or defence contractor community would openly discuss the idea. Surely the thought had occurred to many, but to speak of it might threaten the military’s most sacred cow: the F-35 Lightning II. Here’s some of what I said then:

All of these current and proven fighters share the advantages attributed to the F-35: they are true multirole aircraft, they are highly manoeuvrable, they use advanced digital array radars, they can employ everything in the modern air-to-air and air-to-ground armament inventory, they have helmet-mounted displays with off-boresight missile cueing, they have datalink for information sharing. The only thing they don’t have is stealth.

Fuck stealth. There isn’t an air force in the world that won’t turn tail and run from a wall of Eagles coming its way.


To be fair, there is also this: the success of the F-35 programme depends on American and allied countries standing firm on buying it in the numbers projected. If one or two allies back away from their commitments to buy the F-35, costs will go up dramatically and other allies may get wobbly knees. And if American military services start buying new versions of legacy fighters, they’re going to want fewer F-35s.

A lot has happened since 2015. Buying new versions of legacy fighters is no longer a taboo topic but an established reality. The USAF is buying 144 F-15EX Eagle II aircraft, an advanced version of the F-15QA being built for Qatar. The first two USAF F-15EXs are now undergoing testing at Eglin AFB, Florida. The added capability they’ll give the USAF, in both air-to-air and air-to-ground roles, is already affecting the F-35 programme, with reduced numbers of aircraft being budgeted for and purchased each year.

A more direct threat to the F-35 programme is the USAF purchase of new F-16s (also still in production for foreign customers), since unlike the F-15, the F-16 is the fighter the F-35 was meant to replace. In fact there is now high-level talk of buying new F-16s and capping USAF F-35 purchases at 1,050 versus the 1,763 originally planned. This isn’t a done deal, but it’s looking likely. As for the Navy, it too is buying new versions of a legacy fighter, the F/A-18 Hornet. I don’t have numbers, but the decision is bound to affect the number of F-35s that service will eventually buy.

Under the Obama administration, production of the F-22 Raptor, the stealth air superiority fighter meant to replace the F-15 Eagle, was capped at 187 aircraft, far short of the 750 the USAF said it needed. It made sense then to keep a number of existing F-15Cs flying to supplement the few F-22s in service. Now that those remaining F-15Cs are facing retirement, it makes sense to replace them with new F-15EXs. The same logic applies to the idea of supplementing USAF F-35s with existing F-16s, then purchasing new versions of the F-16 as the existing fleet is retired. In both cases, new versions of legacy fighters are cheaper to buy and operate than the aircraft that were meant to replace them, and in some specific areas (range and weapons-carrying capabilities, for example) better as well. Yes, we sacrifice stealth. You already know what I think of that.

I recently wrote about the Eagle Eye, the rifle scope F-15 pilots once used to see and identify target aircraft at longer ranges. You can see one mounted to the head-up display bracket behind the windscreen of this F-15:

I remembered that my operations officer at Soesterberg Air Base, one of the original cadre of pilots selected to fly the F-15, had been one of the movers behind the Eagle Eye. I contacted him to see if what I’d written was anywhere close to the truth. Here’s his response:

Skid, Great to hear from you and that you are both hale and hearty. Re Eagle Eye … as I recall the impetus was a 2-year mid-70s test called AIMVAL/ACEVAL, during which VID was required. The little airplane mafia wanted to cancel the F-15 buy and purchase a bunch of F-5s. VID meant the all aspect AIM-7 was almost ineffective. We chatted with our AF and McAir engineers and had them design and produce the gun scope mounting brackets, bought 7 scopes for our test aircraft, and tried them out. They got our VID range outside of min range. The things we did for our country! Cheers, Jeff

To flesh that out:

VID is visual identification, the ability to see an adversary aircraft and determine what it is: friend or foe, aircraft type, national markings, etc.

AIMVAL/ACEVAL: Air Intercept Missile Evaluation/Air Combat Evaluation, a mid-1970s test conducted primarily at Nellis AFB, Nevada with a fleet of F-15s, F-14s, and F-5s.

The “little airplane mafia” were reformers in DoD and the defense industry opposed to the Air Force and Navy’s large, expensive, and complex F-15 Eagle and F-14 Tomcat, who argued instead for purchasing large numbers of smaller, less capable fighters like the F-5E Tiger II. Their influence led to the AIMVAL/ACEVAL tests at Nellis, and later to the Air Force and Navy’s decision to buy “high/low” mixes of fighters (F-15s and F-16s, F-14s and F/A-18s).

The AIMVAL/ACEVAL test was “rigged” to skew results in the little airplane mafia’s favor with the imposition of VID requirements imposed on F-15 and F-14 crews, preventing them from employing their long-range weapon, the all-aspect AIM-7 Sparrow missile, against the F-5s (which were not equipped with long-range radars or missiles).

The Eagle Eye, developed by AIMVAL/ACEVAL F-15 pilots, allowed them to VID F-5s coming at them in time to take head-on AIM-7 shots before minimum range.

In the end, despite rules designed to even things out for the little planes, it was clear to military leadership that the F-15 and F-14, with their long-range radars and missiles, gave more bang for the buck. The F-15 in particular turned out to be its own best proponent, with a combat record of 104 air-to-air kills and not a single loss. The small airplane mafia did get something out of the deal, though: USAF F-5 aggressor squadrons were established in the U.S., Europe, and the Pacific (today the USAF’s aggressor role is performed by civilian contractors, but the Navy and Marines still have a few F-5s at China Lake and Yuma).

In my personal experience (I came into the F-15 in 1978, not long after the AIMVAL/ACEVAL tests concluded), artificial training limitations on the F-15’s long range and all aspect missiles persisted well into the 1980s. It was routine, when setting up dissimilar air combat training with units operating older and lesser-capable fighters, for them to demand we not score (or even take) long range head-on radar missile shots, or even close-range head-on shots with our all-aspect heatseeking missiles, the idea being to force us into turning visual dogfights where many of the Eagle’s advantages were eliminated. It was done for fairness, of course, and even though we weren’t allowed to call kills with them, we took those long- and close-range head-on shots anyway, and knew we’d taken our adversaries out prior to the merge … just the way the designers of the Eagle intended.

Today, everyone has all-aspect radar and heatseeking missiles, and is equipped with sophisticated electronic equipment for identifying enemy aircraft at distances outside of visual range. The Eagle Eye, as far as I know, is an obsolete piece of gear. But damn, when you saw F-15 pilots stepping to their jets with a helmet bag in one hand and a mean-looking rifle scope in the other, you knew they meant business!

  • By Paul ‘Skid’ Woodford, We strongly recommend you check out his excellent blog.

Thank you for reading Hush-Kit. Our site is absolutely free and we have no advertisements. If you’ve enjoyed an article you can donate here. At the moment our contributors do not receive any payment but we’re hoping to reward them for their fascinating stories in the future.

The Hush-Kit Book of Warplanes will feature the finest cuts from this site along with exclusive new articles, explosive photography and gorgeous bespoke illustrations. Pre-order The Hush-Kit Book of Warplanes here. Thank you. Our merchandise shop is here and our Twitter account here @Hush_Kit. Sign up for our newsletter here. The Hush-Kit Book of Warplanes will feature the finest cuts from this site along with exclusive new articles, explosive photography and gorgeous bespoke illustrations. Pre-order The Hush-Kit Book of Warplanes here.

(U.S. Air Force photo by Staff Sgt. Matthew B. Fredericks)

High times: A speedy history of drugs in aviation

Let’s get fucked up and fly a plane! Everyone likes to unwind now and again, and pilots are no exception. Join us on a brief high history of flying as we explore the uppers and downers of aviation.


Everyone’s favourite late-night chatting, penis-shrinking, madness-inducing drug, speed, was until recently a fav with the USAF. Amphetamines were given to Allied bomber pilots during World War II to stave off fatigue and enhance focus during long missions. During the Persian Gulf War, amphetamines were super popular with American bomber pilots, and were taken (on a voluntary basis) by roughly 50% of USAF pilots. Until 2017, the US Air Force had been happily handing out amphetamines—dubbed ‘go pills’— to keep pilots perky during long flights. In 2002, two Air National Guard F-16 pilots, under the influence of Dexedrine (the air force’s ‘speed’ of choice) pilots bombed and killed four friendly soldiers in Afghanistan. In the inquiry it was revealed that the pilots (Schmidt and Umbach) were advised by their superiors to take “go pills“, and the airmen cited this as part of their defence.

The German, British, American, and Japanese armed forces hoofed down hefty amounts of amphetamines during World War II. An extremely popular methamphetamine in Germany marketed as Pervitin, were known informally as Stuka pills due to their popularity with the Luftwaffe. The Japanese imperial government distributed pills to pilots for long missions under the trade name Philopon (also known as Hiropin). The Japanese pilots used the term “senryoku zokyo zai” or “drug to inspire the fighting spirits.” Though it is sometimes said that Kamikaze pilots took large doses of methamphetamine (via injection) before their suicide missions, this is much debated and it may have been merely ritual sake and a crushing sense of duty that sent them to their cockpits.

We asked a Cold War fighter pilot if he was encouraged to take speed for long flights, he replied, “Oh, yes. Go pills. We’d save ’em for when we got there so we could stay up all night running the local girls. There wasn’t any kind of a rush. They must have worked, though … either that or the stamina I had after 8- to 10-hour ocean crossings was due to my youth!”

The Hush-Kit Book of Warplanes will feature the finest cuts from this site along with exclusive new articles, explosive photography and gorgeous bespoke illustrations. Pre-order The Hush-Kit Book of Warplanes here


Dexedrine is gone and the new upper of choice for long USAF missions is Modafinil. Shame that “Between 5% to 10% of users may be affected with anxiety, insomnia, dizziness, diarrhoea, and rhinitis”.


Though more popular with infantrymen than pilots in World War I, cocaine was taken by some early aviators (both military and civil). Use of the then widespread confidence-boosting drug is understandable considering the huge risks involved in early aviation (French records reveal cocaine was beloved by many early aviators). To be a fighter pilot in this time was to have one of the most dangerous jobs in all of history. Cocaine was issued by superiors and self-prescribed by airmen themselves. It was taken during long-distance flights by Imperial German military pilots.

According to a 1931 book:

“Cocaine infused into the few duelists of the air who made use of that cold and thoroughly lucid exaltation which – alone among drugs – it can produce … at the same time it left intact their control over their actions. It fortified them, one might say, by abolishing the idea of risk.”


Sadaaki Akamatsu (赤松 貞明, Akamatsu Sadaaki, 30 July 1910 – 22 February 1980) was an ace fighter pilot in the Imperial Japanese Navy during the Second Sino-Japanese War and World War II famed for his mischievous behaviour. He was officially credited with destroying 27 enemy aircraft. This is pretty impressive considering much of his flying was done drunk.

Alcohol and flying have long gone dangerous hand-in-hand. A report from 1963 stated over 35% of fatal general aviation accidents that year involved pilots with measurable amounts of alcohol in their blood.


A man who doesn’t give a shit about mortality Via @GB_Drone

We asked former F-15 pilot Paul Woodford if in-cockpit smoking happened during his time, “When I flew for the 32nd TFS in the Netherlands, one squadronmate, smoked in the cockpit. He carried a screwtop 35-mm film canister in his sleeve pocket and used it as an ashtray. This was in the late 70s/early 80s. I suppose there were others throughout my career, but he is the only one I can say for sure did it. I flew on his wing often and could see him light up in the cockpit. Even though few smoke these days, I bet it’s still done, and actually electric vape cigarettes would make it even easier to smoke in the cockpit, leaving no evidence behind.” Former Lightning pilot Ian Black when asked if recalled smoking replied, “I do – especially in Vietnam era – not sure RAF did it in fighters but pretty sure the VC10 had an ashtray – I know the F-4 did.”

Thank you. Our aviation shop is here and our Twitter account here @Hush_Kit. Sign up for our newsletter here. The Hush-Kit Book of Warplanes will feature the finest cuts from this site along with exclusive new articles, explosive photography and gorgeous bespoke illustrations. Pre-order The Hush-Kit Book of Warplanes here.

Galland had a cigarette (cigar) lighter installed in his Bf 109

Would the Captain Scarlet Angel interceptor have worked in real life? We ask an expert

Jim Smith had significant technical roles in the development of the UK’s leading military aviation programmes from ASRAAM and Nimrod, to the JSF and Eurofighter Typhoon. He was also Britain’s technical liaison to the British Embassy in Washington, covering several projects including the Advanced Tactical Fighter contest. His latest book is available here. We asked him if the Angel Interceptor from the much loved 1960s children’s puppet TV show Capatin Scarlet would have worked in real life.

A while ago now, Hush-Kit asked me to have a look at the Angel Interceptor to see if it was a plausible aircraft. I had a quick look, not knowing anything about the design, or the Captain Scarlet series it came from, and my immediate reaction was favourable, but qualified, along the lines of “Generally looks surprisingly OK, as long as they’re not claiming to do anything silly like hypersonics or STOVL, for example”.

 Well, I don’t need to say any more really, but here goes.

Configuration and stated performance

There is a useful amount of information available on the Angel Interceptor, which is helpful, even though much of it is in old-fashioned colonial units. Noting this, rather than make my comparisons with the Typhoon, I’ll use the F-22 as a comparator.

The Angel Interceptor is a three-surface configuration with a small forward canard, cranked delta wing with turned-down wing tips, and a large tailplane with turned-up tips. Although appearing to be a single-engine aircraft, it has a propulsion system described as “twin turbojet compressors serve the rear-mounted ramjet”. There are some technical issues with this description, but for the moment we’ll assume that we effectively have twin turbofan engines, effectively feeding a common afterburner unit. The F-22, of course, has twin turbofan engines (or given the by-pass ratio of 0.45, these could perhaps be better described as ‘leaky turbojets’) each with its own afterburner and thrust vectoring nozzle.

Among other details, we are told that the weight is 40,000 lb, span 35 ft and length 60 ft. Fuel volume is stated to be 500 gallons, and assuming these are Imperial gallons, this would translate to about 4000 lb fuel weight. The aircraft range is stated to be 25,675 miles, and maximum speed is said to be Mach 3.9. Ceiling is quoted as a surprisingly low 40,000 ft, which makes no sense, considering this is the height quoted for its operating base.

The Angel interceptor is launched from its Cloudbase (flying aircraft carrier) operating base by catapult, and recovered by a pitch-up manoeuvre on to an inclined ramp.

For comparison, the empty weight of the F-22 is about 32,000 lb, and its internal fuel capacity is 18,000 lb. The F-22 has a span of about 45 ft and length of about 60 ft. F-22 ferry range with two external fuel tanks is stated to be 1800 miles, maximum speed is Mach 2.25 (Wikipedia), and ceiling is 50,000 ft.

Angel in a speculative 263 Sqn RAF scheme, profile artworks by Andy Godfrey from the Teasel Studios

Performance Issues

From this very quick and limited comparison we can observe some obvious problems. The Angel is, in a very broad sense, comparable with the F-22, having similar operational empty weight of around 35,000 lb, and broadly similar size, although the different planform of the F-22 has greater span. Given this rather broad resemblance, we can see that both the quoted range and the maximum speed of the Angel interceptor look utterly implausible.

Now, it might be argued that there is some magic in the unusual turbo-compressor/ramjet propulsion system, resulting in very high thrust and low fuel consumption. The nearest aircraft in performance terms to the claims of the Angel would be the SR-71, which uses a variable-cycle turbine engine that has been described as operating like a ramjet at high speed. The overall length of the SR-71 engine, intake and nozzle system is about 45 ft, which is somewhat longer that the engine installation on the Angel. The thrust of each engine is 32,500 lb with afterburning, and the unrefuelled range of the SR-71 is stated to be 2982 miles at Mach 3. To achieve this requires ‘more than 80000 lb’ of fuel (Janes all the Worlds Aircraft 1974-5). From this, we can only describe the stated range performance of the Angel as unachievable.

The Hush-Kit Book of Warplanes will feature the finest cuts from this site along with exclusive new articles, explosive photography and gorgeous bespoke illustrations. Pre-order The Hush-Kit Book of Warplanes here. 

Even were a ‘magic’ fuel to be available – stated to be ‘coboltide’, it seems implausible that the stated 50+ mile per gallon fuel consumption could be achieved, particularly at high speed. SR-71 data suggests that at Mach 3, that aircraft consumes 27 lb (say 3.35 imp gal) of fuel per mile.  The Angel Interceptor is assuming more than 150 times the fuel efficiency of the SR-71.

The maximum speed quoted is Mach 3.9, which raises real issues for both aerodynamic and thermal heating, particularly since the wing tip pods, the tips of the canards and the outer wings would all lie outside the Mach cone from the aircraft nose at that speed. Essentially, this means that they would experience greater aerodynamic heating and wave drag.

Likely ‘real world’ performance

No thrust rating is quoted for the unusual propulsion system, although one of the internet sources suggests perhaps 50000 lb thrust. If we take this as a working assumption, given the weight and the broad configuration, and assume fairly conventional materials are used, a maximum speed of perhaps M 2.5 might be achievable, but for some very draggy features – particularly the fuselage rocket batteries. Internal carriage of the rockets might be a modification worth examining. The forward canard surface might also be better if relocated to a position on the intakes, like the Mirage 4000.

With these changes, quite respectable speed and manoeuvre performance should be achievable, although a ferry range of perhaps 1500 miles is more likely than the stated 25,000 miles. Very much in line with my initial reaction – quite a decent design assuming no attempt at hypersonics or VSTOL.

Take-Off and Landing

The aircraft is depicted in the show as using a catapult-assisted take-off, and this seems to be a reasonable approach, given it is supposed to be operating from a ‘base’ maintained at 40000 ft altitude. Cutaway drawings show no means of achieving thrust-assisted flight, let alone either STO or a vertical landing.

The landing is not vertical, but instead is as a pull up to a stalling attitude, with forward momentum taking the aircraft on to land on an inclined ramp. While it might be possible to maintain controlled flight in a high-powered jet aircraft with a high nose-up angle – this is, after all, a party piece at many airshows – we should not forget that those are at low altitude, not the 40000 ft of the Cloudbase.

The stalling speed of an aircraft in level flight is given by the expression:

Vstall =17.2 x Square Root (Weight/(CLmax x Sigma x Wing Area))

Where Vstall is in knots, weight is in pounds, sigma is the ratio of the air density to the density at sea level, and the wing area is in square feet. (Aerodynamics for Naval aviators). CLmax is the maximum lift coefficient.

From this useful equation, and making a few assumptions about weight, wing area and CLmax, we find that in level flight, at sea level, and assuming a landing weight of 35000 lbs, and a CLmax of 1.8, we get

Vstall = 91 kt

Which is reassuring as it suggests an approach speed of about 118 kt, which appears reasonable.

However, at 40000 ft, Sigma = 0.25, and repeating the calculation, we find the straight and level stall occurs at 181 kt, suggesting an approach speed of about 235 kt, which is clearly untenable.

But, I hear the reader say, what about landing in a stalled condition on to a 30 degree ramp, with the engine thrust offsetting the weight.  

At 30 degrees incidence, using full thrust (assumed to be 50000lb), the wing only has to provide 10000 lb lift, the remainder being balanced by the engine in the high alpha approach. In these circumstances

Vstall = 97 kt

If we make a small allowance for controllability, the approach speed might be 120 kt, and the controlled crash would still be at an unmanageable 100 kts or so.

My advice would be “Don’t try this at home, folks!” unless Cloudbase is not only sustaining itself at 40,000 ft, but also cruising at about 100 kt.

Looking at one of the relevant episodes, it is apparent that while Coudbase does have engines for changing its location, it does not appear to be in motion during the landing sequence. Operating from a static Cloudbase simply makes no sense, because you won’t be able to land back on board. A conventional carrier landing from an approach speed of 200 kt+ is not going to work. The alternative of pitching up to 30 deg to land on a ramp at 100 kt will not work either.

If Cloudbase were moving at 100 kt or so during the landing sequence, then a conventional carrier landing using arrester wires would be possible, and would be a more flexible and less dangerous solution than the inclined ramp. It would, however, require a very different undercarriage arrangement.

Other Aspects

The Angel Interceptor is supposed to use long-range radar-guided air-to-air missiles as a primary weapon, and also to have a gun, or a directed energy weapon. No issues in principle with the choice of weapons, except to note that the physical space available for a radar to detect and track targets is entirely inadequate, and the extremely finely tapered nose has a shape which would not provide a suitable radome either.

One thing the extremely tapered nose would be good for is in reducing wave drag. The pointed nose acts as an Aerospike, forcing the conical shockwave from its tip forward, and largely keeping it from intersecting other aircraft components, at least up to approximately Mach 2.0 . Aerospikes are not often used, but an example can be seen on the nose of the Trident nuclear missile.

The undercarriage of the Angel Interceptor is located in pods on the tips of the sharply down-swept wings. Although one is tempted to wonder whether this is all done for visual effect, and whether a conventional retractable undercarriage would be a lower drag solution, the down-swept wings might actually be useful.

Coupling between the lateral (roll) and directional (yaw) dynamic behaviour can be problematic in relatively slender aircraft at high speed and high altitude. Otherwise known as ‘inertia coupling’, managing this behaviour requires careful attention to lateral and directional stability, and additional fin area below the axis of the aircraft, or reducing the dihedral effect of the wing has been found to be helpful.  So, the down-swept wing tips, used to carry the undercarriage pods, are likely also to be useful in managing ‘inertia coupling’.

The pilot is ‘loaded’ into the aircraft from below, pre-connected to her seat, with a transparent shield arrangement presumably ensuring protection from the low temperature and low-pressure environment at 40000 ft. The seat arrangement is ejected upwards in the event of an emergency. Perhaps a lost opportunity to feature a downward ejector seat, as used on the Vultee XP-54 ‘Swoose Goose’, which also used this cockpit access method.

A lighter solution would surely be to run up steps to enter the cockpit in the normal way, but this would have to take place on the maintenance deck, which would greatly increase the time taken to launch the aircraft.

Angel Interceptor – Good or Bad?

Judged as a conventional Mach 2.2-ish fighter, operating from land or from an aircraft carrier (with modified undercarriage) – not at all bad. Reasonable credible performance and manoeuvrability, moderate range, and a number of interesting features. The radar would be hopeless; the missile installation looks draggy, and the undercarriage somewhat suspect.

Judged as a system with the full claimed capabilities – hopeless. Basing at 40000 ft simply makes landing arrangements implausible, The claims for range, and the use of the exotic ‘coboltide’ fuel, leave the design open to ridicule, as does the claim to be able to fly at Mach 3.9, and to have any kind of STOVL capability.

Save the Hush-Kit blog. Our site is absolutely free. If you’ve enjoyed an article you can donate here. Your donations keep this going. Thank you. 

The propulsion system description is sketchy, but, if considered as two military jet engines feeding a single afterburner might be workable. The alternative approach of switching from gas turbine thrust to ramjet thrust is another possibility, but the internal layout is not set up for that approach.

My verdict – Good fun; interesting original features. Given some modifications, such as a decent radar and internal weapons bays, potentially a good conventional fighter, but unable to operate as depicted in the show, or deliver the claimed range and maximum speed.”

Thank you. Our aviation shop is here and our Twitter account here @Hush_Kit. Sign up for our newsletter here. The Hush-Kit Book of Warplanes will feature the finest cuts from this site along with exclusive new articles, explosive photography and gorgeous bespoke illustrations. Pre-order The Hush-Kit Book of Warplanes here.

Top 10 Polish aircraft

Lepszy wróbel w garści niż gołąb na dachu

( A sparrow in the hand is better than a pigeon on the roof ) – Polish proverb

We are battered about the head with generous ladleful’s of the aeronautical accomplishments of Britain and the United States. Those after marginally more specialised histories can readily leave the high street and find plentiful shady backstreet dealers to satisfy the more demanding palates of those wishing to gorge on French, Soviet or even Swedish subjects. But some absolutely fascinating tales from other nations, even in today’s bountifully expansive world of aviation writing, are seldom seen outside of their national languages. The independent nation of Poland is younger than the aeroplane itself, and spent its formative years in bloody wars with Ukraine, the Soviet Union before invasion by Germany and then domination by the Soviet Union. The unique story of its aviation industry, and its beautiful and monstrous flying machines, is ripe for the telling. So what happened?

Popular ideas of Poland’s contribution to aviation history centre on its fighter pilots’ valiant service in the Battle of Britain, and the notion –– disseminated by German and Soviet propaganda –– that pre-war Polish aircraft were hopelessly obsolete. Due to the long lasting efforts of Goebbels and Stalin’s propaganda machines, most of the achievements of the Polish aviation industry in this time remain largely forgotten. As we shall see, several Polish designers were heavily involved in the creation of some extremely famous British aeroplanes.

Before we dig into the history of some brilliant and often overlooked aeroplanes, let us first look at the reasons that the Polish aviation industry was the way it was. Firstly, it’s worth noting that Poland was the only country in Europe to match German developments in glider design in the pre-war period. Whereas Germany was forced to choose that path due to the Versailles Treaty restrictions, Poland was simply poor, having just been resurrected in 1918 after 123 years of slavery under Prussian, Austro-Hungarian and Russian occupation.

Not a merry-go-round SR-71, but a mock-up of the PZL-230 Skorpion (scorpion) – a Polish low-cost attack aircraft concept developed by PZL Warszawa-Okecie during the late 1980s and early 1990s

Secondly, it has to be remembered that this newly independent nation only had 19 years in which to develop its indigenous technology before World War II started. Thirdly, the birth of the new Poland fuelled an incredible amount of patriotic confidence within the Polish people, and aviation became one of the fields where they felt they could excel.

An honourable mention for the PZL I-22 Iryda, the controversial and ultimately doomed trainer intended to replace the Iskra

10. RWD-9 ‘The Messerschmitt-Beater

The RWD name comes from the initials of three talented young engineers – Rogalski, Wigura and ewiecki – who established their own company and designed increasingly successful aircraft. In the early 1930s the sports aircraft competition to win was the Challenge International des Avions de Tourisme, an incredibly demanding series of trials for aircraft intended to accelerate the development of aeroplane technology for trans-European touring.

The exacting regulations filled a fat book, and some of them made for a very difficult compromise, the wings had to fold for easy storage, and good short-take off and landing performance was desirable and the competition entailed a high-speed race around Europe, demanding a high cruise speed. In 1932, an upset victory rocked the pundits expectations – the Challenge was won by a Polish RWD-6 aircraft, flown by Żwirko and Wigura.

Losing on their home turf, the German contingent looked on bitterly as the Polish crew were decorated at the Berlin-Staaken airfield ceremony. Sadly, several weeks later the victorious crew perished in heavy weather over Czechoslovakia. Since Poland won the Challenge, it had to host the next contest in 1934, and this time the new Germany (under Hitler) intended to win back the Challenge. With state aid, Messerschmitt’s Robert Lusser set about designing an aircraft which would have a chance of winning against anything the Poles could bring (no other country actually counted as viable competitors any more). This was to be the Messerschmitt Bf-108 Taifun, which in its first iteration with its huge flaps and tiny ailerons close to the wingtips, was extremely unforgiving to fly.

The Poles were working on an improved version of the RWD-6, designated ‘RWD-9’. The work on the design of aircraft started 15 months before the Challenge, and seven months after work had started the first prototype flew. At the same time a new Polish radial engine was being designed by Stanislaw Nowkuński. The new aeroplane was revolutionary, as it managed the combine seemingly contradictory: a top speed to stall speed ratio over 5, requiring a very high cruising speed with a very low stall speed. This necessitated a hugely sophisticated wing, with leading edge slats, flaps, flaperons and spoilers, which was able to generate a very high coefficient of lift of 3.5. The light alloy engine developed almost 300 horsepower despite weighing a mere 148 kilos.

Despite the fact that Polish crews had only a month to practice on type ahead of the Challenge, they came first and second! They had not only demonstrated absolutely devastating STOL characteristics, but their RWD-9 aircraft withstood a murderous 9,500 km race around Europe with no problems. What most impressed educated observers was the astonishing fact that the top speed of the Polish monoplane (152 knots) was over 5 times higher than its stall speed (29 knots). Its take-off roll was a minuscule 54 metres (180 feet). Experienced pilots, such as Captain Jerzy Bajan (the Challenge winner) were able to make full use of those extraordinary flight characteristics, further aided by an effective landing gear design which made very short violent landings possible.

The Hush-Kit Book of Warplanes will feature the finest cuts from this site along with exclusive new articles, explosive photography and gorgeous bespoke illustrations. Pre-order The Hush-Kit Book of Warplanes here

The RWD-6 was basically a prototype, and only eight were built. Some of them led extremely eventful lives: two were sold to Spain, where they were used as liaison aircraft in the civil war. One crashed into the Baltic Sea while carrying a famous general to see his wife returning from the US on a Polish ocean liner. One was bought by a French aviation institute and was irreparably damaged when ignorant mechanics used acid to clean the engine (many parts were made of the lightweight Elektron which dissolves in acid). Nowkuński, the engine design genius, died in a climbing accident in the Tatra mountains. Not a single RWD-9 survived the war.

9. PZL P.24: Greek Hero

The gull-winged PZL P-11 fighter is famed for its valiant but ill-fated use by pilots in defending Poland in 1939, where it faced an horrofic mauling by the formidable Messerschmitt Bf 109, then the best fighter in the world. The P.24 was one of a longer line of gull-winged aircraft, that started with the P-1 designed by Zygmunt Puławski. This all-metal monoplane flew in 1929 and was a vision of the future, at a time when most European countries were firmly in the biplane era. The P-1’s distinctive ‘bent’ wing gave the pilot superior forward vision over the cowling of the Hispano inline engine. Unfortunately the government decided that Poland would manufacture a military aircraft engine under license, and that it would be a rather bulkier air-cooled radial designed by Roy Fedden at Bristol. Because of this questionable move to radial engines, the sleek inline P-1 never progressed beyond two prototypes. It was redesigned into the radial-engined P-6, and then the inline-engined P-8; the former was developed into the P-7 which first flew in 1930 and entered full service in 1933.

The designer Puławski was killed while test-flying an amphibian aircraft of his own design, and the design team was taken over by Wsiewołod Jakimiuk (who later gave the world the DHC Chipmunk). The P-7 was developed into the P-11, which already obsolete, had to defend Polish skies against the Nazi onslaught. But there is another plane stemming from the same DNA which was never used by the Polish air force.

Poland wished to export aircraft, but the license agreement with Bristol precluded the sale of Warsaw-built engines abroad. A solution came from France, from Gnome-Rhône: they would supply sample engines if Polish industry chose to buy engines for export-spec planes from them in the future. Long story short, the P.24 was born, each armed with two Swiss 20-mm Oerlikon cannon. The aeroplane was offered to a number of countries, and during a firing run at a Turkish range one of the underwing-mounted Oerlikons jammed and blew up; the wing spars remained undamaged and Bolesław Orliński was able to land the plane safely.

The PZL P.24 became one of the most successful Polish aviation export products. It was sold to Bulgaria and Greece (each version reflecting the needs of the customer) and was sold alongside a production license to Romania and Turkey. Bulgarian fighters during the war were assigned to a fighter combat school (a factory designed by Polish engineers was planned to produce a new model under license but the war intervened). Romanian P-24 aircraft fought against the Soviet Union. Turkish ones were never used in combat and were retired in 1945.

However, Greek PZL P.24 fighters saw a lot of action. When Fascist Italy attacked Greece on 28 October 1940, a force of 24 serviceable planes (out of 36) rose to repel Italian bombers and fighters. What is fascinating is the fact that until the impatient Germans entered the fray, the Greek fighters were efficiently repelling the Italians! In all, the Greek P.24s shot down 37 Italian and 3 German aircraft, with a loss of 35 own aircraft. The ramming of an Italian Z.1007 bomber by Lt. Mitralexis became an event immortalised in Greek history books.

In total, 97 P.24 production aircraft were built in Poland and 52 abroad under license. The only survi-vor can be found in a museum in Turkey.

8. PZL-37 ŁOŚ (Moose): Laminar flow

In 1934 a PZL works engineer, Jerzy Dąbrowski, started work on a fast monoplane bomber which he confidently expected to exceed the air force specification which demanded two engines, a 1200 km range, an offensive load of twenty 100 kg bombs, the ability to carry 300 kg bombs, and top speed over 217mph (350 kph). His metal, low-wing aircraft had a very thin wing which had to be made thicker to accommodate bombs. When tested in the Warsaw Aerodynamics Institute wind tunnel, his airfoil seemed to produce less drag than comparable designs, actually less than the textbooks of the day said it should have: it was in fact, the first laminar flow airfoil developed in Poland, and one of the first in the world.

The PZL-37 Łoś bomber featured some other innovations, including a revolutionary main landing gear unit, with a single strut supporting twin, elastically suspended wheels – this arrangement was very compact, easy to fold into the engine nacelle, and well suited to operating from unprepared fields. After a number of teething problems and modifications (including the introduction of twin vertical tailfins) the ‘Moose’ went into production. Over 90 examples were completed and test-flown before the war.

The aeroplane, powered by license-built Bristol Pegasus engines, was smaller than comparable Western bombers, but carried a similar bomb load. It was also seriously fast (223 knots or 256mph). Over 50 units were ordered by foreign customers, but none were built before the war (they would be even faster with more powerful Gnome-Rhône powerplants). Two airframes received Bristol Perseus sleeve valve engines for experimental purposes.

In September 1939 the units equipped with the Łoś fought bravely against German armour and supply columns, but unfortunately their full potential was never reached due to grave tactical errors by the Polish high command. Some airframes were evacuated to Romania where they remained for the rest of the war; some of them were successfully used by the Romanians against the Soviet Union.

Several survived the War, which the Romanian government offered to return to Poland, however the Moscow-serving Communist government declined the offer as the existence of such planes would contradict the official propaganda line which claimed that all pre-war Polish aircraft were utterly inferior. At least two aircraft were repaired by the Germans and sent to the Rechlin E-Stelle for testing. Two examples of the aircraft were flown by the Soviet air force.

7. PZL-46 Sum (Catfish): Daring raid

Work on the PZL-46 light bomber commenced in 1936, with Stanisław Prauss as the lead designer. Tadeusz Sołtyk, who would later work on the notorious TS-8 Bies and TS-11 Iskra, was his deputy. Henryk Milicer, who would go on to design the British Percival Provost trainer, was also a member of the team.

The new plane was to replace the PZL-23 Karaś (crucian carp) light reconnaissance bomber in Polish Air Force service. It was first flown in early 1939, soon after being presented at the Paris Air Show. It had a unique ventral gunner gondola, which in its last iteration lowered itself under the gunner’s body weight in flight, with a rubber rope system damping the downward motion. The air force ordered 300 PZL-46 aircraft, powered by license-built Bristol Pegasus engines, and an export version for Bulgaria was also planned.

Only the second prototype was in flying condition when the invasion happened and it was evacuated to Romania. Though Romania and Poland were officially allies, under German pressure Romanian officials were interning the servicemen of Poland and requisitioning their equipment. A deception was concocted to avoid the PZL-46 falling into German hands. Feigning submissiveness, it was agreed with local authorities that it would be flown to another airfield to make it available for inspection by Romanian engineers. With the local authorities deceived, instead it escaped back to Poland on September 26th, carrying an officer courier with orders for the commander of the defence of Warsaw. It was flown by the exceptionally gifted engineer and test pilot, Stanisław Riess. He tried to land at the Okęcie airfield in Warsaw, but this was already occupied and he was greeted with fierce anti-aircraft fire. He managed to avoid getting shot down and landed at the edge of the nearby Pole Mokotowskie airfield. The following morning Riess managed to take off in the dark, deftly avoiding German fighters, and flew to Kaunas in Lithuania, where the aircraft was interned. When the Soviet Union annexed Lithuania it probably stole the sole PZL-46; its subsequent fate is unknown.

Stanisław Prauss reached England and in 1940 was employed by Westland Aircraft, where he worked on the Lysander, the Whirlwind and the Welkin. In 1946 he found employment at de Havilland, where he continued to work when the company became Hawker Siddeley; notable aircraft he contributed to included the Comet, Trident and the A300. Stanisław Riess also reached England, and was employed by the AAEE at Boscombe Down. He was assigned the task of finding the reasons for the tendency of the Handley Page Halifax to enter a flat spin: during one of the flights he was unable to recover from the spin and was killed in the crash. The data collected during the fatal flight helped cure the problem.

6. RWD-11: Faster than fighters

In 1934, the RWD design team started work on a light twin for the ministry of transport, a design intended to carry eight people over medium distances at high speed. The ministry did not pay at first, as a form of revenge on the factory which had refused to let itself be nationalised.

During flight testing, flutter was encountered for the first time on a Polish-designed aircraft. To discover the range of wing vibrations the Polish engineers used a gramophone installed at a right angle, with the record replaced with a cardboard sheet…and a pencil. The necessary changes revealed in this ingenious testing were introduced and the RWD-11 proved to be safe and pleasant to fly. With its two 200 hp Walter Major engines and refined aerodynamics it boasted an impressive performance.

The prototype was used in a feature film where it took part in scenes filmed with a flight of PZL P-11 fighters. During the filming, the RWD factory test pilot, Aleksander Onoszko, outran the escorting fighters, thus creating even more animosity against RWD within the red-faced air force establishment. Their pride stung, rather than ordering the RWD-11 as a fast medevac aircraft or a multi-engine trainer, the top brass simply pretended it did not exist.

The sole prototype suffered a hydraulically operated landing gear malfunction in August 1939, making an evacuation from Warsaw impossible. It is believed to have been repaired and to have served as a liaison aircraft with the Luftwaffe. As for the pilot, Aleksander Onoszko, he flew 43 combat sorties in World War II with the Polish 304 Bomber Squadron on Wellingtons, later flying transatlantic missions on BOAC B-24 Liberators.

This is the crew of a Wellington from the Polish 304 Bomber Squadron attached to Coastal Command which attacked three Ju-88 aircraft bombing an Allied convoy in the Bay of Biscay. Lt. Wacław Lisiecki held them off until the German aircraft ran out of fuel.

5. Iskra – The Legend

The Iskra (‘spark’) was the first indigenous Polish jet aircraft design. The TS-11 Iskra was a straight-wing trainer designed by Tadeusz Sołtyk (mentioned above in the PZL-46 description) at the Warsaw Institute of Aviation. It made its first flight on February 5 1960. Between 1962 and 1987 more than 420 examples were manufactured, fifty of which were exported to India. The Indian Air Force operated Iskra trainers from 1976, received a further 26 examples in the 1990s, before retiring the type in 2004.

The Iskra is the mount of the Polish national aerobatic team, the Biało-Czerwone Iskry (the white-red sparks). The group has its roots in the Grupa Rombik (The Little Rhombus Team) that performed at air shows in Poland in the early 1970s. The Iskry made their debut in 1991, at the Ławica airport show in Poland. The Polish industry then showcased the Iskra jet all around Europe, the jet making appearances at the 1976 and 1977 Farnborough Air Shows, and at the 1977 Paris Air Salon. In 1964 the TS-11 prototype broke four in-class records, including a speed record of 521mph (839kph.) Intriguingly, the TS-11 never received a NATO reporting name.

Save the Hush-Kit blog. Our site is absolutely free. If you’ve enjoyed an article you can donate here. Your donations keep this going. Thank you. 

In the 1960s Iskra stood a chance to become the standard jet trainer of the Warsaw Pact air arms, a hugely significant opportunity considering the potential order size. It lost, however, to the Czechoslovakian Aero L-29 Delfín, despite beating it in the official assessment. It was clear the Soviets had no wish for the Poles to win anything. Poland became the only Warsaw Pact nation to operate the Iskra.

A total of 110 examples of the Iskra were still in service in the Polish Air Force in 2002, by 2013, only thirty airframes were still flying. In 2016 Poland took delivery of the Alenia Aermacchi/Leonardo M-346 – the replacement of Iskra. The last training sortie made by an Iskra took place on 9 December 2020. Currently the Polish Air Force only has its aerobatic team, the Biało-Czerwone Iskry, flying the type.

4. TS-16: Killed by the ‘Mighty Integral’

After the TS-11, designer Tadeusz Sołtyk then proceeded to pursue an even more ambitious goal – the creation of a modern supersonic aircraft, the TS-16 Grot (‘Arrowhead’). The first steps in the Grot project were taken in 1958. The main intention was to create a lead-in trainer that would allow the pilots to get acquainted with flying a supersonic aircraft. With the rather demanding MiG-21 forming the bulk of the Polish Air Force – this was very much needed. Initially, the design concept was known as the TS-13, which started in 1959. It resembled the F-101 Voodoo in wing planform. Then, after the T-38 Talon made its maiden flight, the Grot was redesigned with the benefit of consideration of the Northrop design, and ultimately was proposed to the air force. However, politics stopped the Grot dead in its tracks.

The command of the air force suspected that the name of the jet referred to the wartime pseudonym of General Stefan ‘Grot’ Rowecki. He was the chief commanding officer of AK (Armia Krajowa – Home Army) which was a resistance movement in Poland during the War, subordinate to the legal Polish government in exile. It had a much smaller Communist counterpart, AL (Armia Ludowa – People’s Army). The AK officially disbanded on January 19 1945 to avoid armed conflict with the Soviets and civil war. Rowecki had been murdered by the Nazis at the personal order of Heinrich Himmler, but was considered an enemy of the Soviets and thus taboo. The second problem stemmed from the ‘unlucky’ project designation – the inauspicious ‘TS-13’ was re-designated ‘TS-16’.

It had a delta wing with a 45-degree sweep, similar to that of the MiG-21. Two variants of the jet were to be manufactured – B and A, the former was to be a trainer, the latter was to an attack aircraft. For commonality, armament was to be the same as that of the ‘Fishbed’. Ultimately, the Grot design was modified to have one of the MiG-19’s RD-9B engines in place of the originally decided twin SO-2s.

From 1961 to 1963, the design was finalised. The TS-16RD was ready by the mid-1960s. Nevertheless, The Mighty Integral (as Tom Wolfe referred to the Soviet authority) decided to cancel the project and limit the capabilities of the Polish design bureaus. The Soviets had a different plan for Poland – it was to license-manufacture Soviet design airframes, instead of developing designs of its own. Even though the project was not cancelled immediately, it suffered from a lack of manpower. Only 40 engineers worked on it, while 200 would have been needed to finish it. Nonetheless, ultimately, the Grot was submitted for governmental approval. The Scientific Council of Defence Ministry to consult with the Soviet authorities. This was the death knell of an extremely promising design.

3. PZL-104 Wilga

Competition gliding’s popularity in Poland was growing. A reliable workhorse towplane was in demand, moreover, there was a lack of a modern, light multi-purpose aircraft. Short take-off and landing would be a desirable, combined with good performance and low-operating costs. The requirement led to creation of the PZL-104 Wilga (thrush) at the WSK Okęcie facility. Designed by a team led by Ryszard Orłowski, it was made entirely of metal. The aircraft received a flat WN-6RB engine designed by Witold Narkiewicz. The prototype made its maiden flight on April 24 1962. The engine tended to overheat requiring fuselage redesign.

The engineer Bronisław Żurakowski created the the Wilga 2 prototype with a new lighter fuselage in 1963. Still using a flat Continental engine, the aircraft was still troublesome. The ultimate solution came in the form of the adoption of the far more powerful AI-14 Soviet radial engine (which worked well at low RPM). This also contributed to the excellent STOL properties of the aircraft. With all these modifications in place the aircraft became the Wilga 3. This was further refined as the PZL-104 Wilga 35 which made its maiden flight in June 1967.

The Wilga proved a workhorse, excelling at whatever was asked of it, be it towing gliders, leisure flying or as a sporting aircraft*. Indeed it was a particularly good as a sporting aircraft, the Poles dominating the FAI precision flying championship in Wilgas for many years. It was in fact so good, that the championship rules were changed to end the unmatched reign of this PZL design, perhaps the most compelling proof of the the type’s excellence.

* An armed counter-insurgency prototype was built too

2/1. Agro-Aviation – The Polish Specialty: PZL M-15 and Dromader

In demonology, Belphegor is one of the seven princes of Hell notorious for seducing people by suggesting to them ingenious inventions to make them filthy rich. Its aircraft namesake is often described as the ugliest aeroplane ever built, its tough unlikely appearance somewhat like allotment buildings frozen halfway in transformation to flying locomotive; its smoke-belching ultra low-flying across bleak remote farmlands could be seen as a very visceral metaphor for the communist era. Its origins are cloaked in intrigue – according to one engineer who worked at Mielec at the time part of the original specification was for an chemical warfare aircraft to brutally put down insurgencies or revolutions in communist states on the verge of Islamic reformation with genocidal attacks. NATO suspected it had a chemical warfare capability with the West in mind, perhaps even as a platform for the spraying of deforestation to rob NATO forces of cover. It is likely that NATO’s scaremongering was actively incited by the Soviet Union and not rooted in fact. The unofficial name ‘ Belphegor’ was given somewhat ironically to a sales rep by Andrzeja Abłamowicz, in reference to the Phantom of the Louvre, when he was asked if the type had a name (at Le Bourget in 1976). Though popularly used abroad, in Poland the type is generally known by its designation. Along with the Coandă 1910 and the Screamin’ Sasquatch 1929 Taiperwing replica, it was one of only three biplane jets in existence.

Among the Soviet bloc, Poland’s aerospace industry had a particular love for the agricultural, a long-lasting affair that dated back to the interwar years. The CWL facility created the first aircraft-mountable spraying systems that were then fitted onto the Potez XV, Breguet XIV and Fairman Goliath F-68 before the hiatus of invasion and occupation.

During the Cold War period, Poland was asked by the Soviets to develop an agricultural airframe that would incorporate jet propulsion.What followed was an utterly bizarre beast, the PZL M-15 Belphegor*. Not only was it the only agriculture-focused jet design, it was also the only serially-produced jet-powered biplane. The goal was to replace the ubiquitous An-2 (produced in series in Poland for the Soviets). The Belphegor was a successful design for its time – when economy and fuel consumption were not a priority! It was tailored to serve large fields and was capable of long-haul ferry flights. With vast fields to operate over, as impractical as the aircraft seems today, it served its purpose well back when it was needed. Almost 200 examples were made between 1976 and 1982.

PZL M21 Julian Herzog via Creative Commons

While the M-15 was a successful design, the An-2 remained an extremely good agricultural platform. When the Mielec facility that manufactured both decided to open itself towards the West, they met with an opportunity to provide the ASh-62 engines from the An-2 to the US company Rockwell, to power the Thrush Commander. The Polish designers noticed the Commander platform had further growth potential, and created a prototype of their own making using only some elements of the American predecessor. Known as the M-18 Dromader, the M-18 was an export hit. An impressive 760 examples have been sold all around the world. In a case of ‘ploughshares to swords‘ at least one airframe was used as a combat aircraft in the civil war in Yugoslavia. 

A smaller specialised crop sprayer aircraft was built in smaller series at the Okęcie works, the PZL-106 Kruk (Raven), also tested with a turboprop. For 42 years, Polish pilots flying the Kruks have been supporting crop-dusting operations in Sudan (worthy of an article in itself that we may come back to). 

Thank you. Our aviation shop is here and our Twitter account here @Hush_Kit. Sign up for our newsletter here. The Hush-Kit Book of Warplanes will feature the finest cuts from this site along with exclusive new articles, explosive photography and gorgeous bespoke illustrations. Pre-order The Hush-Kit Book of Warplanes here.

Words: Piotr R. Frankowski, Jacek Siminski from The Aviationist, Joe Coles
Images: NAC (Polish National Digital Archive), Wikimedia Commons

QUESTION: presumably the test phase of the Belphegor project must have featured a more sensible and aesthetically pleasing aircraft..? what could possibly have birthed this? ANSWER: the Lala-1

  • Echoes in the Sky@exoticaviation

Flying & Fighting in the Soviet Tu-142 ‘Bear: aircrew interview

Created at the height of the USSR’s global power, the Tupolev Tu-142 is a maritime patrol developed from the Tu-95 ‘Bear’ strategic bomber. With around 60,000 horsepower – the fastest, largest, loudest turboprop aircraft in the world thundered across the seas surrounding India for 29 years. Protecting the subcontinent this long-ranged beast earned the respect of its crews and the appropriate nickname of ‘Albatross‘. We spoke to those who flew the Albatross with the Indian Naval Air Arm to find out more.

“When we had a joint exercise with the US Navy P-3C Orion, they offered us a million dollars to have a peep inside the aircraft!”

Commander VC Pandey (Veteran)NM,VSM

Credit: Commander VC Pandey

Prior to the Tu-142, I was flying the Ilyushin Il-38. I was trained on the Il-38 in Riga in 1976, I flew this aircraft until 1985 in India and gained a great deal of experience. I was an Instructor and Examiner of Pilots on this aircraft. I was trained in the same centre at Riga to fly and command the Tu-142 in October 1987. Having vast experience of flying the Il-38 was very helpful in flying Tu’s thanks to the similar instrument concept. For example, the Artificial Horizon indicators of both these aircrafts are opposite to those of non-Russian type of aircraft!

To start the main engines, there is a turbo generator on board (similar to an APU) which is started up with the supply from a ground unit. Each engine has an inbuilt mini engine which is started first. Normally, the Flight Engineer starts the engines. The power levers can also be handled by the Flight Engineer in the cockpit.

Credit: Commander VC Pandey

The visibility from the cockpit is very good. We have done a few close formation flights for at air shows. The Short Range Navigation System (RSBN) is very similar to a VHF omnidirectional range (VOR) with distance measuring equipment (DME) and was available on board. However, it was incompatible beyond Russian territories. There was no GPS, INS, FMS, TCAS etc. on board the aircraft, yet it was able to fly around the world and navigate very accurately. The responsibility of navigation was the duty of the Flight Navigator, whose work station was ahead of the Captain’s seat in the nose area. He was required to power the ‘Stars Navigation System’ a couple of hours before the starting of the main engines.

The Star Navigation System known as MAIS in Russian was the main navigation system on board. The almanac of various stars around the globe was available in the computer of this system. After inserting our own position, the system locks on to stars available in the Zenith. The altitude and declination from a couple of stars would give a position accurate to a few metres. Thereafter during the flight, the system would automatically compute its own position.

Cdr. V C Pandey

The ‘Data Link System’ was displayed in the centre on the dashboard in the cockpit and with an electronic screen displaying the deployment of various sensors and some virtual images. This data was could be shared with another airborne or shore station for assessment and information of the current situation for decision making.

What should I have asked you?
Why Russians built the Tu-142 aircraft and from where did they deploy them? The US Navy developed the UGM-27 Polaris, a submarine- launched ballistic missile with a range of more than 1800 kilometres. Polaris became operational on 15 November 1960. The Soviet government consequently ordered Tupolev to study possible dedicated anti-submarine warfare aircraft. Initially they built Tu-95s and later various versions of the same platform modified for different roles, designated Tu-142M. I flew the Tu-142MK-E version. Nuclear submarines need not surface for many months, so Tu’s were positioned in Cuba, Murmansk and Vietnam and were able to track US nuclear submarines around the globe in real-time and transmit their position by data-link system to their operational bases.

“I had noticed that these American fighters were fully armed. In the aft section of the Tu-142 there is a gun with twin barrels and a gunner crew. The flight gunner reported that ‘The fighter is very close to me and almost touching our aircraft ‘. I told him not to provoke him and keep cool, soon they will go away.”

The thing I liked best about the Tu was its speed, ceiling, low-frequency analysis and underwater recording sensors and their armaments for the destruction of underwater targets. It had a unique concept of flight controls. It had a fly-by-computer system. Control columns and rudder pedals in the cockpit were connected by push pull rods to a computer, output of which would deflect the elevators, ailerons and rudders taking into consideration various flight conditions. The movement indications of these surface areas was available in the cockpit.

Air-to-air refuelling system
The fuel capacity of this aircraft was about 100 tonnes. This fuel could normally give about 16 hours of flight. This aircraft was operated by a single crew, therefore provision of this airborne refuelling system was a tactical decision by the Russians. Flexibility to takeoff from a short runway, fuel/ time availability was the deciding factor for this system.

Worst thing about the Tu-142

Credit: Commander VC Pandey

I think the philosophy of Russian aircraft designers in those days was to fill the aircraft with equipment first and only thereafter consider anything else. A rest-room (and even toilet) in the aircraft was not considered necessary. Every operator seat had a portable water bottle for collection of personal urine during the flight. The aircraft did not have any dry or wet rest-room for defecation. The crew member had to leave his seat, go to a corner and discharge urine in that bottle. The aircraft did not have any designated rest area. There was no provision for making tea or coffee in the aircraft, not even a microwave oven to warm up the food. It was very tough and all crew members were male.

Training and ferry flight to India, our aircraft training commenced in the month of October. The temperature had already dropped below freezing in Riga. In the month of December, the temperature was hovering around minus 20 to minus 30 degrees C. Icing was never a problem for this aircraft. In the month of December, every thing in Riga is covered with snow, all is white, including runways. Every landing was radar vectored Cat -1 ILS Approach, nothing visual till approx 500 feet or so. Thereafter , all that one could see was a small strip of black land mass. After landing and clearing the active runway, the runway disappears due to heavy snowfall. My training on the Tu was done under such extreme, difficult, conditions.

The Hush-Kit Book of Warplanes will feature the finest cuts from this site along with exclusive new articles, explosive photography and gorgeous bespoke illustrations. Pre-order The Hush-Kit Book of Warplanes here. 

Most memorable flight?
The maiden flight to India, Russians permitted all Indian crew to ferry fly this aircraft from Russia to India. They did all the planning. It was decided that the aircraft would depart from Simferopol, Ukraine, to Goa in India and it would be a non-stop direct flight. The route chosen was overflying Ankara – Larnaca -Cairo – Jeddah – Aden – Mumbai then land in Goa. Russian Air Traffic Controllers cleared the flight to fly at around 36,000 feet and at 0.76 the speed of sound. The moment we contacted Saudi Controllers they requested for Radial and DME from a particular position. We replied that VOR DME is not available on board. The controller became very furious and asked us to immediately descend to around 15000 feet. We had no choice but to comply, we had fully tanked up so fuel was no problem.

Credit: Commander VC Pandey

The Aden Controller was very nice and friendly. He cleared us to climb back to 36,000 feet and to fly direct to Mumbai. We climbed to the designated height, auto pilot ‘ON’. After reaching the level, we handed over the stick of the Auto Pilot controller to my Copilot. Yes, there was a long extendable stick with control buttons for manoeuvring the aircraft and it could be swung between the pilots. We were in an ‘I’m home’ mood – but it did not last long. American naval fighters came from nowhere and started formating and taking pictures of every inch of our aircraft. These aircraft would be with us for about 15-20 minutes, do a vertical Charlie and disappear. Soon another fighter would arrive to accompany us into the Arabian Sea. I had noticed that these American fighters were fully armed. In the aft section of the Tu-142 there is a gun with twin barrels and a gunner crew. The flight gunner reported that ‘The fighter is very close to me and almost touching our aircraft ‘. I told him not to provoke him and keep cool, soon they will go away. It happened so, at exactly 150 miles from Mumbai. The fighter departed and did not return to keep us company. Anyway, we were in contact with Mumbai controllers. Note – This aircraft is now in a museum in Vishakhpatnam in India, which is open to public.

Vinod Bhasin

Credit: Vinod Bhasin

Which types did you fly before and after the Tu-142? When did you start on the Tu-142?
I did my basic training on a single engine tail wheel Indian aircraft known as the Pushpak before moving onto the piston engine Britton Norman Islander. I then got selected for the Tu-142M, or ‘Bear-F’. After leaving the Navy I flew the Super King Air B200 turboprop for five years before graduating on to the bombardier BD700 Globals. Initially I flew the classic BD700 with the Honeywell avionics suite and then the BD700 vision with the Rockwell Collins suite.

Credit: Cdr. V C Pandey

How did it differ from the type you were flying before?
The Tu’s were poles apart from the Islanders which is what I was flying earlier. From a 3-ton piston engine to a 185-ton aircraft – the heaviest and the fastest turboprop in the world – was a humongous change.

First impressions?
We were shocked and awed. Got goose bumps, literally, at first sight.

How would you rate the cockpit for the following:

Once we got acquainted we were quite comfortable. It was an entirely novel experience in the beginning because most of the stuff was done by others. The throttles were manipulated by the Flight Engineer who was actually facing aft, his seat located behind the copilot. Both the pilots of course had their own throttles and could override the Flight Engineer. Navigation was done by the flight navigator who was seated in the nose of the aircraft at a lower deck. The Flight Signaller, again facing aft, behind the pilot in command did all the long distance communications. The check list was done by the flight gunner with challenge and response. He was seated at the tail, facing aft, and with no access to the rest of the aircraft. He was indeed a lonely fella and was happy reading the checklist! So you see almost everything was provided on a platter to the pilots.

Being welcomed at a maintenance visit to Tagarog in 1987. Credit: Vinod Bhasin

Pilot’s view
Reasonably good

The seats were quite comfortable I thought but other than that not much thought was given to crew comfort. Answering to the calls of nature by a crew of nine in the front crew area in one toilet over long flights was a big challenge

Very compact for the pilots. As stated above many tasks were done by other crew.

What is the best thing about the Tu-142?
The fastest and the heaviest turbo prop in the world. We would cruise at 0.8 m during transit. Powerful engines each producing 15000 shp. The contra-rotating propellers were fascinating.

….and the worst?
Noise…and fuel consumption.

How would you rate the Tu-142 in the following areas:

Take-off Good except that it required long runways for take off because of its weight.

Landing She handles pretty well during landing and the engine response is pretty good despite throttles being manipulated by the Flight Engineer on command of the Pilot Flying (PF). The last time I flew these was in 2002, but the sequence of throttle orders coming in for landing will stick in my memory always. Outers to flight idle as we flare, inners to flight idle short of touch down, inners zero, unlock all and then outers zero!

Credit: Cdr. V C Pandey

Combat effectiveness.

Pretty effective overall. Avionics and equipment were archaic to begin with, but upgrades happened with the passage of time and this aircraft succeeded in keeping the enemy submarines down. The Western World were always intrigued and somewhat wary of this platform and the world perception of the Indian Navy in general changed once we acquired these planes.

All the co-pilots

Acceleration Great
Top speed Normal cruise was 0.8 and not to exceed 0.82
Reliability Spares was an issue from time to time but the dispatch reliability was well managed.
Weapons Effective
Climb rate Good for its weight
Range Enviable, almost unmatched
Sensors Effective with retro fitment as time went by.

What’s the biggest myth about the Tu-142? Perhaps, that it is an overrated machine.

What should I have asked you? How do the crew feel after taking off at 8pm and landing at about 9am the next morning after flying 400 metres over the sea for most part in a pitch dark night with the auto pilot unserviceable?

Credit: Cdr. V C Pandey

Describe your most memorable flight in a Tu-142

There were a few exciting ones including a test flight wherein an engine would not unfeather after intentional shutdown and the subsequent three engine landing. But the most memorable for me was a ferry flight from Cairo to Taganrog (sometime in 1996/97) wherein the destination was changed from Simferopol to Taganrog at the last minute due to some technical reason. Communication with the ATC controller was a big challenge since he couldn’t speak English. An Indian embassy official who had come to receive us was hurriedly summoned to the ATC to resolve the confusion.

Describe a typical mission

Take off, high level transit to operations/exercise area, descent to lower altitude, dropping of sonobuoys for detection, location and tracking of submarines, climb to transit altitude and return to base

How comfortable was a mission – how loud was it in the cockpit? Long missions by night were tiring. Noise levels were high.

What was life like between missions? Life between missions depended on the level of your responsibility. Adequate rest and recreation for the youngsters and back to the desk for those holding appointments.

Tell me something I don’t know about the Tu-142

Proper parachute deployment of any sonobuoy/weapon drop was confirmed initially by physical sighting by the Flight Gunner who was seated at the tail facing aft.

When we flew these planes from Simferapol to Goa for the first time we did not have GPS or even VOR on board and hence navigation was a challenge. In case the undercarriage did not go down, the emergency lowering was initiated by the Sonic Operator.

Mayday discount of 15% on the Hush-Kit Book of Warplanes with code MAYBANK15 — grab the deal here:

Describe the Tu-142 in three words

The mighty props

What was its role in Indian service? What would the aircraft have done in a full scale war? Can we avoid this question?

How did you feel when it was retired? Sad. Couldn’t hold back the tears. I was part of the commissioning crew, was trained in the erstwhile USSR by the Russians as a copilot, went on to train other pilots and ultimately commanded the squadron.

What is your favourite memory of the type? The Russian instructor pilot standing in between two of us Indian pilots and instructing us to come in for landing in Russian language with the help of an interpreter.

Does it have a nickname in Indian service? The Albatross

Do you miss it? Immensely.

Was there anything unusual about flying it? A couple of unusual things amongst others, were the Flight Engineer facing aft and throttle orders without getting to look out and the flight gunner stuck at the tail of the plane all by himself at his crew stations

What was the greatest potential military threat to the aircraft? Carrierborne fighter aircraft.

Sergey © Photo : Sergey Krivchikov

Cmde MR Ajaykumar NM VSM (Retd)

I was an Observer in Tu-142, therefore I will be answering from an Observer’s perspective!

With which unit did you serve? I served in multiple units, commanded the air squadron, Naval Air station handling multiple air squadrons, I commanded multiple ships including being captain of a missile frigate.  

Which types did you fly before and after the Tu-142? I flew the Il-38 before the TU.

 When did you start on the Tu-142? I went to erstwhile USSR, Riga, for the aircraft induction training in 1987!

How did it differ from the type you were flying before? Both being Russian long-range maritime patrol aircraft, not much difference in terms of cockpit. However, the TU had more advanced systems!

First impressions? Impressive and menacing looks!

How would you rate the cockpit for the following:

Ergonomics Average

Pilot’s view- Comfortable


Russians never cater for crew comfort. First, they install the systems and then check where to fit the man behind the machine! Flying at times more than ten hours on missions, were a test of human endurance sitting in an uncomfortable seat. The aircraft did not have a proper toilet also! But we felt proud to fly the highest and fastest flying turbo prop in the world!


Not the modern type. More of a second world war look!

What is the best thing about the Tu-142? It is rough and tough! Very forgiving and lots of importance to the man behind the systems!

…and the worst? The crew comfort

How would you rate the Tu-142 in the following areas

Take-off For full weight take-off cannot be done from average runways. Very long take off run.

Landing Long landing run and very high Load Classification Number runway required.

Combat effectiveness

Very effective, despite being from older technology.

Top speed Fastest turbo prop, 0.82 mach!


Very reliable.

Weapons  It had bombs, torpedoes, depth charges and a tail gun. It was later was modified to carry air-to-surface Harpoon missiles.

Range 12550 Km

Sensors – Radar, Magnetic Anomaly Detector, Air early warning radar for tail gun, ESM, Sonobuoys, radar transmission warner.

What’s the biggest myth about the Tu-142? No one really knew about the actual capability of the Tu. It was a well-kept secret! When we had a joint exercise with the US Navy, P-3C Orion, they offered us a million USD to have a peep inside the aircraft! So you can imagine the myth!

Describe your most memorable flight in a Tu-142

The first flight, from Simferopol in the USSR to India, routing via, Ankara, Cypress, Cairo, Djibouti, and Goa in India! Almost 13hrs nonstop flight… In the midst of Iran-Iraq war in full swing. Occasionally the US Navy’s F-14 Tomcats flying with us in formation!

An F-14A Tomcat aircraft of Fighter Squadron 111 (VF-111), bottom, investigates a Soviet-built Tu-142 Bear F maritime reconnaissance aircraft of the Indian navy.

Describe a typical mission

Mostly anti-submarine missions. Drop sonobuoys in the area and locate and track the submarine. Otherwise typical maritime missions.

How comfortable was a mission – how loud was it in the cockpit?

Crew comfort was not really good. The cockpit was a bit loud.

What was life like between missions? There used to be adequate breaks between routine missions. It was generally compressed only during major exercises or operational missions. But generally ensured a 24-hour break after a 10-hour mission.

Tell me something I don’t know about the Tu-142 A Tu has been converted into a walk-in museum in the Port city of Visakhapatnam in India. So, there is no more secrets!

Describe the Tu-142 in three words The Mighty Props!

What was its role in Indian service? What would the aircraft have done in a full scale war? It was extensively used in maritime reconnaissance and anti-submarine warfare missions. Also, the ESM was put to good use in electronic snooping.  

How did you feel when it was retired? I felt really sad to see the aircraft being retired, which I saw from commissioning and was the Commanding officer of the squadron!

What is your favourite memory of the type? Lots. Many operational and camaraderie memories. It never failed us!

Did it have a nickname in Indian service? The Albatross!

Do you miss it? Yes!

Was there anything unusual about the aircraft or flying it? The mission commenced almost two hours before the take-off, because the Inertial Navigation System took about 90 minutes to settle down! So, we had to man the aircraft 90 minutes before take-off!

What was the greatest potential military threat to the aircraft? Long range SAMs and fighter aircraft!

Thank you. Our aviation shop is here and our Twitter account here @Hush_Kit. Sign up for our newsletter here. The Hush-Kit Book of Warplanes will feature the finest cuts from this site along with exclusive new articles, explosive photography and gorgeous bespoke illustrations. Pre-order The Hush-Kit Book of Warplanes here.

Name          Jasbir Singh

Rank           Commander

Unit             Navy

Before the Tu-142  I flew the HT2, Harvard, Vampires, HJT-16, Alize, Illusion-38 and Tu 142, after Tu-142 I flew the Airbus 310, B747 and B7771A. The Tu-142 was a very heavy aircraft to fly and the first power control aircraft to fly. It was a very impressive aircraft with good anti submarine warfare equipment.


How would you rate the cockpit for the following:

Ergonomics Good. Auto pilot could be controlled by both the pilots in the comfort of their seats. 

Pilot’s view Good Comfort Moderate Instrumentation Moderate. No VOR, DME good only in Russian airspace.

Best thing  Very sleek and high speed turbo prop aircraft with long range.

Worst thing  No proper toilet facilities. A bucket was kept with a curtain around.


How would you rate the Tu-142 in the following areas: 
A.Take-off 6 out of 10 B. Landing 7/10 C. Combat effectiveness 8/10 D. Acceleration 5/10  E. Top speed 925 Km/h     F. Reliability Good  G. Weapons Torpedoes and depth  H. Climb rate Poor

I. Range 12500 Km J. Sensors  Good 7 out of 10

It was a myth was that Tu-142M is a deadly platform, which was not the case because of poor navigation equipment. However, the Indian Navy made upgrades and improved the performance.

Most memorable mission            

An aircraft Islander crashed near Visakhapatnam. We took off from Goa and the weather en route and in the search area was very bad. It was a night operation. We completed the  mission with CBs (cumulonimbus)all around us. It was the most tense flight we had.

Noise level in the cockpit was moderate.

What was life like between missions?  Great

Describe the Tu-142 in three word Big, fast, good. 

What was its role? In Indian service it performed the role of maritime and anti-submarine warfare. Same maritime  and antisubmarine warfare.

How did you feel on its retirement? Emotional when it came in after its last flight in a grand function which I attended.

Do you miss it? Not really   

What was the greatest potential military threat to the aircraft? Ships anti-aircraft guns, anti aircraft missiles etc.